{"title":"基于推覆分析结果和基于模态损伤指数的地震损伤检测新方法","authors":"M. Mazloom, N. Fallah","doi":"10.5829/ije.2023.36.10a.14","DOIUrl":null,"url":null,"abstract":"The diagnosis of the location of structural damage and its extent after an earthquake using numerical methods is one of the ongoing research topics. After the occurrence of damage in a structure and a reduction in its stiffness, the dynamic characteristics of the structure change, and therefore, assessing the changes in its dynamic characteristics can be used as an indicator for detecting damage. In this article, an advanced technique called Direct Stiffness Calculation (DSC) and a new damage index based on flexural stiffness variations (SVI) are utilized for damage detection in structures. Initially, the proposed technique is examined on a steel beam with known specifications. Then, a reinforced concrete moment frame is modeled, and after extracting its dynamic characteristics, it is subjected to a pushover analysis to create a damage scenario without direct intervention. Based on the analysis results, the plastic hinge formation location at both ends of the beam is selected as the probable location of damage in the floor. By using the modal information of the damaged structure and calculating the SVI in the beams of the floors, it is determined that this index can accurately and significantly distinguish the location of damage only by knowing the first mode of the structure and with sufficient magnification compared to other points. Furthermore, the results demonstrate that with this method, it is possible to accurately determine the location of damage even without knowing the dynamic characteristics of the intact structure and solely with the information of the damaged structure.","PeriodicalId":14109,"journal":{"name":"International Journal of Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Approach for Seismic Damage Detection Based on Results of Pushover Analysis and Modal Based Damage Index\",\"authors\":\"M. Mazloom, N. Fallah\",\"doi\":\"10.5829/ije.2023.36.10a.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnosis of the location of structural damage and its extent after an earthquake using numerical methods is one of the ongoing research topics. After the occurrence of damage in a structure and a reduction in its stiffness, the dynamic characteristics of the structure change, and therefore, assessing the changes in its dynamic characteristics can be used as an indicator for detecting damage. In this article, an advanced technique called Direct Stiffness Calculation (DSC) and a new damage index based on flexural stiffness variations (SVI) are utilized for damage detection in structures. Initially, the proposed technique is examined on a steel beam with known specifications. Then, a reinforced concrete moment frame is modeled, and after extracting its dynamic characteristics, it is subjected to a pushover analysis to create a damage scenario without direct intervention. Based on the analysis results, the plastic hinge formation location at both ends of the beam is selected as the probable location of damage in the floor. By using the modal information of the damaged structure and calculating the SVI in the beams of the floors, it is determined that this index can accurately and significantly distinguish the location of damage only by knowing the first mode of the structure and with sufficient magnification compared to other points. Furthermore, the results demonstrate that with this method, it is possible to accurately determine the location of damage even without knowing the dynamic characteristics of the intact structure and solely with the information of the damaged structure.\",\"PeriodicalId\":14109,\"journal\":{\"name\":\"International Journal of Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2023.36.10a.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2023.36.10a.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A New Approach for Seismic Damage Detection Based on Results of Pushover Analysis and Modal Based Damage Index
The diagnosis of the location of structural damage and its extent after an earthquake using numerical methods is one of the ongoing research topics. After the occurrence of damage in a structure and a reduction in its stiffness, the dynamic characteristics of the structure change, and therefore, assessing the changes in its dynamic characteristics can be used as an indicator for detecting damage. In this article, an advanced technique called Direct Stiffness Calculation (DSC) and a new damage index based on flexural stiffness variations (SVI) are utilized for damage detection in structures. Initially, the proposed technique is examined on a steel beam with known specifications. Then, a reinforced concrete moment frame is modeled, and after extracting its dynamic characteristics, it is subjected to a pushover analysis to create a damage scenario without direct intervention. Based on the analysis results, the plastic hinge formation location at both ends of the beam is selected as the probable location of damage in the floor. By using the modal information of the damaged structure and calculating the SVI in the beams of the floors, it is determined that this index can accurately and significantly distinguish the location of damage only by knowing the first mode of the structure and with sufficient magnification compared to other points. Furthermore, the results demonstrate that with this method, it is possible to accurately determine the location of damage even without knowing the dynamic characteristics of the intact structure and solely with the information of the damaged structure.
期刊介绍:
The objective of the International Journal of Engineering is to provide a forum for communication of information among the world''s scientific and technological community and Iranian scientists and engineers. This journal intends to be of interest and utility to researchers and practitioners in the academic, industrial and governmental sectors. All original research contributions of significant value in all areas of engineering discipline are welcome. This journal is published in two quarterly transactions. Transactions A (Basics) deals with the engineering fundamentals. Transactions B (Applications) are concerned with the application of engineering knowledge in the daily life of the human being and Transactions C (Aspects) - starting from January 2012 - emphasize on the main engineering aspects whose elaboration can yield knowledge and expertise that can equally serve all branches of engineering discipline. This journal will publish authoritative papers on theoretical and experimental researches and advanced applications embodying the results of extensive field, plant, laboratory or theoretical investigation or new interpretations of existing problems. It may also feature - when appropriate - research notes, technical notes, state-of-the-art survey type papers, short communications, letters to the editor, meeting schedules and conference announcements. The language of publication is English. Each paper should contain an abstract both in English and Persian. However, for the authors who are not familiar with Persian language, the publisher will prepare the translations. The abstracts should not exceed 250 words.