Y. Fennell, Patrick Ymele-Leki, T. A. Adegboye, Kimberly L. Jones
{"title":"纳米银硫化对铜绿假单胞菌生物膜的影响","authors":"Y. Fennell, Patrick Ymele-Leki, T. A. Adegboye, Kimberly L. Jones","doi":"10.4236/JBNB.2017.81006","DOIUrl":null,"url":null,"abstract":"Silver nanoparticles (Ag-NPs), one of the most common types of nanomaterials in medical fields and consumer products, are known to have antimicrobial effects; these materials also undergo a series of chemical and biological transformations in the environment. Although the pristine form of silver nanoparticles has been studied, less is known about the impacts of the transformed Ag-NPs on biological systems. This knowledge gap hinders the progress of effectively assessing the impacts of Ag-NPs on the environment and human health. In this study, we demonstrate that the most common form of transformed Ag-NPs, sulfidized silver nano-particles (Ag2S-NPs), show less damage on established Pseudomonas aeruginosa GFP (ATCC® 10145 GFP™) biofilm than the pristine form of the nanoparticle. At a dosage of 0.625 mg/L, the total biomass in the biofilm decreased 64% after being exposed to Ag-NPs and 44% after exposure to Ag2S-NPs. Live biofilms were also interrogated. We observed high reduction in live population for biofilm exposed to Ag-NPs and relatively low reduction by Ag2S-NPs at exposure concentrations higher than 0.625 mg/L. Compared with Ag-NPs, the lower solubility of Ag2S-NPs results in less Ag+ diffusion into established biofilms. Our results suggest that the sulfidation of Ag-NPs reduces their impacts on established biofilms, indicating that the transformed Ag-NPs may have less environmental or human health risks.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"38 1","pages":"83-95"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Impact of Sulfidation of Silver Nanoparticles on Established P. aeruginosa Biofilm\",\"authors\":\"Y. Fennell, Patrick Ymele-Leki, T. A. Adegboye, Kimberly L. Jones\",\"doi\":\"10.4236/JBNB.2017.81006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silver nanoparticles (Ag-NPs), one of the most common types of nanomaterials in medical fields and consumer products, are known to have antimicrobial effects; these materials also undergo a series of chemical and biological transformations in the environment. Although the pristine form of silver nanoparticles has been studied, less is known about the impacts of the transformed Ag-NPs on biological systems. This knowledge gap hinders the progress of effectively assessing the impacts of Ag-NPs on the environment and human health. In this study, we demonstrate that the most common form of transformed Ag-NPs, sulfidized silver nano-particles (Ag2S-NPs), show less damage on established Pseudomonas aeruginosa GFP (ATCC® 10145 GFP™) biofilm than the pristine form of the nanoparticle. At a dosage of 0.625 mg/L, the total biomass in the biofilm decreased 64% after being exposed to Ag-NPs and 44% after exposure to Ag2S-NPs. Live biofilms were also interrogated. We observed high reduction in live population for biofilm exposed to Ag-NPs and relatively low reduction by Ag2S-NPs at exposure concentrations higher than 0.625 mg/L. Compared with Ag-NPs, the lower solubility of Ag2S-NPs results in less Ag+ diffusion into established biofilms. Our results suggest that the sulfidation of Ag-NPs reduces their impacts on established biofilms, indicating that the transformed Ag-NPs may have less environmental or human health risks.\",\"PeriodicalId\":68623,\"journal\":{\"name\":\"生物材料与纳米技术(英文)\",\"volume\":\"38 1\",\"pages\":\"83-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物材料与纳米技术(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JBNB.2017.81006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物材料与纳米技术(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBNB.2017.81006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of Sulfidation of Silver Nanoparticles on Established P. aeruginosa Biofilm
Silver nanoparticles (Ag-NPs), one of the most common types of nanomaterials in medical fields and consumer products, are known to have antimicrobial effects; these materials also undergo a series of chemical and biological transformations in the environment. Although the pristine form of silver nanoparticles has been studied, less is known about the impacts of the transformed Ag-NPs on biological systems. This knowledge gap hinders the progress of effectively assessing the impacts of Ag-NPs on the environment and human health. In this study, we demonstrate that the most common form of transformed Ag-NPs, sulfidized silver nano-particles (Ag2S-NPs), show less damage on established Pseudomonas aeruginosa GFP (ATCC® 10145 GFP™) biofilm than the pristine form of the nanoparticle. At a dosage of 0.625 mg/L, the total biomass in the biofilm decreased 64% after being exposed to Ag-NPs and 44% after exposure to Ag2S-NPs. Live biofilms were also interrogated. We observed high reduction in live population for biofilm exposed to Ag-NPs and relatively low reduction by Ag2S-NPs at exposure concentrations higher than 0.625 mg/L. Compared with Ag-NPs, the lower solubility of Ag2S-NPs results in less Ag+ diffusion into established biofilms. Our results suggest that the sulfidation of Ag-NPs reduces their impacts on established biofilms, indicating that the transformed Ag-NPs may have less environmental or human health risks.