{"title":"不定sasaki流形的类光超曲面上的某些主方向","authors":"S. Ssekajja","doi":"10.47743/anstim.2022.00018","DOIUrl":null,"url":null,"abstract":"In this paper, the geometry of some principal directions on a tangential lightlike hypersurface of an indefinite Sasakian manifold is investigated. In particular, we have proved, under some geometric conditions, that if the total space has constant holomorphic sectional curvature then such curvature is − 3. Moreover, it is shown that the underlying lightlike hypersurface is, locally, foliated by totally geodesic lightlike hypersurfaces.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On certain principal directions in lightlike hypersurfaces of an indefinite Sasakian manifold\",\"authors\":\"S. Ssekajja\",\"doi\":\"10.47743/anstim.2022.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the geometry of some principal directions on a tangential lightlike hypersurface of an indefinite Sasakian manifold is investigated. In particular, we have proved, under some geometric conditions, that if the total space has constant holomorphic sectional curvature then such curvature is − 3. Moreover, it is shown that the underlying lightlike hypersurface is, locally, foliated by totally geodesic lightlike hypersurfaces.\",\"PeriodicalId\":55523,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47743/anstim.2022.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/anstim.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On certain principal directions in lightlike hypersurfaces of an indefinite Sasakian manifold
In this paper, the geometry of some principal directions on a tangential lightlike hypersurface of an indefinite Sasakian manifold is investigated. In particular, we have proved, under some geometric conditions, that if the total space has constant holomorphic sectional curvature then such curvature is − 3. Moreover, it is shown that the underlying lightlike hypersurface is, locally, foliated by totally geodesic lightlike hypersurfaces.
期刊介绍:
This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.