西尔维斯特矩阵方程下矩阵的半张量积

Q4 Mathematics
P. Chansangiam, S. Sabau
{"title":"西尔维斯特矩阵方程下矩阵的半张量积","authors":"P. Chansangiam, S. Sabau","doi":"10.47743/anstim.2022.00020","DOIUrl":null,"url":null,"abstract":"We investigate the Sylvester matrix equation in which the product is given by the semi-tensor product, and all involved matrices are matrices over an arbitrary field. We discuss necessary/sufficient condition(s) for the matrix equation to have a solution or a unique solution, or infinitely many solutions. These conditions concern ranks and linear independence. Moreover, we apply a certain kind of vectorization and matrix partitioning to transform the Sylvester equation into an equivalent linear system with respect to the conventional matrix product. Our study includes the Lyapunov equation and the equation A ⋉ X = C as special cases.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sylvester matrix equation under the semi-tensor product of matrices\",\"authors\":\"P. Chansangiam, S. Sabau\",\"doi\":\"10.47743/anstim.2022.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the Sylvester matrix equation in which the product is given by the semi-tensor product, and all involved matrices are matrices over an arbitrary field. We discuss necessary/sufficient condition(s) for the matrix equation to have a solution or a unique solution, or infinitely many solutions. These conditions concern ranks and linear independence. Moreover, we apply a certain kind of vectorization and matrix partitioning to transform the Sylvester equation into an equivalent linear system with respect to the conventional matrix product. Our study includes the Lyapunov equation and the equation A ⋉ X = C as special cases.\",\"PeriodicalId\":55523,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47743/anstim.2022.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/anstim.2022.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

研究了其乘积由半张量积给出的Sylvester矩阵方程,其中所涉及的矩阵都是任意域上的矩阵。讨论了矩阵方程有解、有唯一解、有无穷多个解的充分必要条件。这些条件涉及等级和线性独立性。此外,我们应用某种向量化和矩阵分划将Sylvester方程转化为一个关于常规矩阵积的等价线性系统。我们的研究包括Lyapunov方程和方程A × X = C作为特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sylvester matrix equation under the semi-tensor product of matrices
We investigate the Sylvester matrix equation in which the product is given by the semi-tensor product, and all involved matrices are matrices over an arbitrary field. We discuss necessary/sufficient condition(s) for the matrix equation to have a solution or a unique solution, or infinitely many solutions. These conditions concern ranks and linear independence. Moreover, we apply a certain kind of vectorization and matrix partitioning to transform the Sylvester equation into an equivalent linear system with respect to the conventional matrix product. Our study includes the Lyapunov equation and the equation A ⋉ X = C as special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信