{"title":"张量积图的Sunlet分解","authors":"A. Akwu","doi":"10.47743/anstim.2022.00019","DOIUrl":null,"url":null,"abstract":"For any integer r ≥ 3, the sunlet graph of order 2 r is a graph consisting of a cycle of length r with each vertex of the cycle adjacent to a pendant vertex. In this present article, we shall obtain the necessary and sufficient conditions for decomposing the tensor product of complete graphs and complete graph minus a 1-factor with complete graph K m (that is, K n × K m and K n − I × K m respectively) into sunlet graphs.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sunlet decomposition of tensor product graphs\",\"authors\":\"A. Akwu\",\"doi\":\"10.47743/anstim.2022.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any integer r ≥ 3, the sunlet graph of order 2 r is a graph consisting of a cycle of length r with each vertex of the cycle adjacent to a pendant vertex. In this present article, we shall obtain the necessary and sufficient conditions for decomposing the tensor product of complete graphs and complete graph minus a 1-factor with complete graph K m (that is, K n × K m and K n − I × K m respectively) into sunlet graphs.\",\"PeriodicalId\":55523,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47743/anstim.2022.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/anstim.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
对于任意整数r≥3,2r阶的太阳图是由一个长度为r的循环组成的图,该循环的每个顶点与一个垂顶点相邻。在本文中,我们将得到完全图与完全图K m(分别是K n × K m和K n−I × K m)的张量积分解成太阳图的充分必要条件。
For any integer r ≥ 3, the sunlet graph of order 2 r is a graph consisting of a cycle of length r with each vertex of the cycle adjacent to a pendant vertex. In this present article, we shall obtain the necessary and sufficient conditions for decomposing the tensor product of complete graphs and complete graph minus a 1-factor with complete graph K m (that is, K n × K m and K n − I × K m respectively) into sunlet graphs.
期刊介绍:
This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.