保形拟双斜浸没

Q4 Mathematics
Sushil Kumar, A. T. Vanli, Sumeet Kumar, R. Prasad
{"title":"保形拟双斜浸没","authors":"Sushil Kumar, A. T. Vanli, Sumeet Kumar, R. Prasad","doi":"10.47743/anstim.2022.00013","DOIUrl":null,"url":null,"abstract":"Maps have always been a fascinating topic for geometers that continually gen- erates new ideas. We continue our study [20] on quasi bi-slant submersions by exploring the application of conformal maps between Riemannian manifolds. In present paper, we define conformal quasi bi-slant submersions from almost Hermitian manifolds onto Riemannian manifolds. We study the geometry of leaves of distributions, work out integrability con- ditions of distributions on these submersions and obtain conditions for such submersions to be totally geodesic. Moreover, we mention some examples of conformal quasi bi-slant submersions.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Conformal quasi bi-slant submersions\",\"authors\":\"Sushil Kumar, A. T. Vanli, Sumeet Kumar, R. Prasad\",\"doi\":\"10.47743/anstim.2022.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maps have always been a fascinating topic for geometers that continually gen- erates new ideas. We continue our study [20] on quasi bi-slant submersions by exploring the application of conformal maps between Riemannian manifolds. In present paper, we define conformal quasi bi-slant submersions from almost Hermitian manifolds onto Riemannian manifolds. We study the geometry of leaves of distributions, work out integrability con- ditions of distributions on these submersions and obtain conditions for such submersions to be totally geodesic. Moreover, we mention some examples of conformal quasi bi-slant submersions.\",\"PeriodicalId\":55523,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47743/anstim.2022.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/anstim.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

对于几何学家来说,地图一直是一个令人着迷的话题,它不断产生新的想法。通过探索黎曼流形之间的共形映射的应用,我们继续对拟双斜淹没的研究。在本文中,我们定义了从几乎厄米流形到黎曼流形的共形拟双斜浸没。研究了分布叶的几何性质,给出了分布在这些泛函上的可积性条件,并得到了这些泛函是完全测地线的条件。此外,我们还提到了一些保形拟双斜淹没的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal quasi bi-slant submersions
Maps have always been a fascinating topic for geometers that continually gen- erates new ideas. We continue our study [20] on quasi bi-slant submersions by exploring the application of conformal maps between Riemannian manifolds. In present paper, we define conformal quasi bi-slant submersions from almost Hermitian manifolds onto Riemannian manifolds. We study the geometry of leaves of distributions, work out integrability con- ditions of distributions on these submersions and obtain conditions for such submersions to be totally geodesic. Moreover, we mention some examples of conformal quasi bi-slant submersions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信