超电磁场的收敛性和速度可和性

Q4 Mathematics
P. Natarajan
{"title":"超电磁场的收敛性和速度可和性","authors":"P. Natarajan","doi":"10.47743/anstim.2022.00015","DOIUrl":null,"url":null,"abstract":"Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K . Following Kangro [2–4], we introduce the concepts of convergence with speed λ (or λ -convergence) and λ -summability by the infinite matrix A (or A λ summability) in K . We then prove a characterization of the matrix class ( c λ ,c µ ), where c λ denotes the set of all λ -convergent sequences.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On convergence and summability with speed in ultrametric fields\",\"authors\":\"P. Natarajan\",\"doi\":\"10.47743/anstim.2022.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K . Following Kangro [2–4], we introduce the concepts of convergence with speed λ (or λ -convergence) and λ -summability by the infinite matrix A (or A λ summability) in K . We then prove a characterization of the matrix class ( c λ ,c µ ), where c λ denotes the set of all λ -convergent sequences.\",\"PeriodicalId\":55523,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47743/anstim.2022.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/anstim.2022.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,K表示一个完备的、非平凡值的、超度量的(或非阿基米德的)场。序列、无穷级数和无穷矩阵的项都在K中。根据Kangro[2-4],我们通过K中的无限矩阵A(或A λ可和性)引入了速度为λ(或λ -收敛)和λ -可和性的概念。然后证明了矩阵类(c λ,cµ)的一个刻划,其中c λ表示所有λ收敛序列的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On convergence and summability with speed in ultrametric fields
Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K . Following Kangro [2–4], we introduce the concepts of convergence with speed λ (or λ -convergence) and λ -summability by the infinite matrix A (or A λ summability) in K . We then prove a characterization of the matrix class ( c λ ,c µ ), where c λ denotes the set of all λ -convergent sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信