广义矩阵代数上的乘李三重高导

Q4 Mathematics
M. Ashraf, Mohd Shuaib Akhtar, B. Wani
{"title":"广义矩阵代数上的乘李三重高导","authors":"M. Ashraf, Mohd Shuaib Akhtar, B. Wani","doi":"10.47743/anstim.2022.00003","DOIUrl":null,"url":null,"abstract":"Let N be the set of nonnegative integers and G = ( A , M , N , B ) be a 2-torsion free generalized matrix algebra over a commutative ring R . In the present paper, under some lenient assumptions on G , it is shown that if ∆ = { δ n } n ∈ N is a sequence of mappings δ n : G → G (not necessarily linear) satisfying δ n ([[ a,b ] ,c ]) = P r + s + t = n [[ δ r ( a ) ,δ s ( b )] ,δ t ( c )] for all a,b,c ∈ G , then for each n ∈ N , δ n = d n + τ n ; where d n : G → G is an additive mapping satisfying d n ( ab ) = P r + s = n d r ( a ) d s ( b ) for all a,b ∈ G , i.e., D = { d n } n ∈ N is an additive higher derivation on G and τ n : G → Z ( G )(where Z ( G ) is the center of G ) is a map vanishing at every second commutator [[ a,b ] ,c ].","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative Lie triple higher derivations on generalized matrix algebras\",\"authors\":\"M. Ashraf, Mohd Shuaib Akhtar, B. Wani\",\"doi\":\"10.47743/anstim.2022.00003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let N be the set of nonnegative integers and G = ( A , M , N , B ) be a 2-torsion free generalized matrix algebra over a commutative ring R . In the present paper, under some lenient assumptions on G , it is shown that if ∆ = { δ n } n ∈ N is a sequence of mappings δ n : G → G (not necessarily linear) satisfying δ n ([[ a,b ] ,c ]) = P r + s + t = n [[ δ r ( a ) ,δ s ( b )] ,δ t ( c )] for all a,b,c ∈ G , then for each n ∈ N , δ n = d n + τ n ; where d n : G → G is an additive mapping satisfying d n ( ab ) = P r + s = n d r ( a ) d s ( b ) for all a,b ∈ G , i.e., D = { d n } n ∈ N is an additive higher derivation on G and τ n : G → Z ( G )(where Z ( G ) is the center of G ) is a map vanishing at every second commutator [[ a,b ] ,c ].\",\"PeriodicalId\":55523,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47743/anstim.2022.00003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/anstim.2022.00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

让我们做一组非消极的分子和G = (A, M, N, B),做一个2代导数矩阵algebra在一个共同的环R。《现在,这篇文章在一些lenient assumptions on G,是展示那如果∆={δn} n∈n是一个序列的mappingsδn: G→G(不是线性necessarily)令人满意δn ([a, b], c) = P + r + s t = n[δr (a),δs (b)],δt (c)为所有的a、b、c∈G,然后为每n∈nτδn = d, n + n;哪里d n: G→G是一个additive绘图令人满意的d n P (ab) = r + s = n d r (a) d s (b)为所有a、b∈d G,神盾局= {d n} n∈n是一个additive高derivation在G和τn: G→Z (G)中心》(Z (G)在哪里G)是一个地图消失在每一秒commutator [a, b], c)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative Lie triple higher derivations on generalized matrix algebras
Let N be the set of nonnegative integers and G = ( A , M , N , B ) be a 2-torsion free generalized matrix algebra over a commutative ring R . In the present paper, under some lenient assumptions on G , it is shown that if ∆ = { δ n } n ∈ N is a sequence of mappings δ n : G → G (not necessarily linear) satisfying δ n ([[ a,b ] ,c ]) = P r + s + t = n [[ δ r ( a ) ,δ s ( b )] ,δ t ( c )] for all a,b,c ∈ G , then for each n ∈ N , δ n = d n + τ n ; where d n : G → G is an additive mapping satisfying d n ( ab ) = P r + s = n d r ( a ) d s ( b ) for all a,b ∈ G , i.e., D = { d n } n ∈ N is an additive higher derivation on G and τ n : G → Z ( G )(where Z ( G ) is the center of G ) is a map vanishing at every second commutator [[ a,b ] ,c ].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信