具有长时记忆的热粘弹性反平面接触问题分析

Q4 Mathematics
C. Rachid, Lebri Nemira
{"title":"具有长时记忆的热粘弹性反平面接触问题分析","authors":"C. Rachid, Lebri Nemira","doi":"10.47743/ANSTIM.2021.00008","DOIUrl":null,"url":null,"abstract":"We study a mechanical problem modeling the antiplane shear deformation of a cylinder in frictional contact with a rigid foundation. The material is assumed to be thermo-viscoelastic with long-term memory, the process is quasistatic, and the friction is modeled with Tresca’s law. The mechanical model is described as a coupled system of a variational elliptic equality for the displacements and a differential heat equation for the temperature. We present a variational formulation of the problem and establish the existence and uniqueness of weak solution in using general results on evolution equations with monotone operators and fixed point arguments.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"34 1","pages":"97-111"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a thermo-viscoelastic antiplane contact problem with long-term memory\",\"authors\":\"C. Rachid, Lebri Nemira\",\"doi\":\"10.47743/ANSTIM.2021.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a mechanical problem modeling the antiplane shear deformation of a cylinder in frictional contact with a rigid foundation. The material is assumed to be thermo-viscoelastic with long-term memory, the process is quasistatic, and the friction is modeled with Tresca’s law. The mechanical model is described as a coupled system of a variational elliptic equality for the displacements and a differential heat equation for the temperature. We present a variational formulation of the problem and establish the existence and uniqueness of weak solution in using general results on evolution equations with monotone operators and fixed point arguments.\",\"PeriodicalId\":55523,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"volume\":\"34 1\",\"pages\":\"97-111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47743/ANSTIM.2021.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/ANSTIM.2021.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究了圆柱与刚性基础摩擦接触时的反平面剪切变形的力学问题。假设材料是具有长期记忆的热粘弹性,过程是准静态的,摩擦用特雷斯卡定律建模。力学模型被描述为位移的变分椭圆方程和温度的微分热方程的耦合系统。给出了该问题的变分形式,并利用单调算子和不动点参数演化方程的一般结果,建立了该问题弱解的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a thermo-viscoelastic antiplane contact problem with long-term memory
We study a mechanical problem modeling the antiplane shear deformation of a cylinder in frictional contact with a rigid foundation. The material is assumed to be thermo-viscoelastic with long-term memory, the process is quasistatic, and the friction is modeled with Tresca’s law. The mechanical model is described as a coupled system of a variational elliptic equality for the displacements and a differential heat equation for the temperature. We present a variational formulation of the problem and establish the existence and uniqueness of weak solution in using general results on evolution equations with monotone operators and fixed point arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信