时间序列分析中的协整与误差校正模型简介

IF 0.4 4区 社会学 Q4 INTERNATIONAL RELATIONS
Helmut Thome
{"title":"时间序列分析中的协整与误差校正模型简介","authors":"Helmut Thome","doi":"10.4119/UNIBI/IJCV.475","DOIUrl":null,"url":null,"abstract":"Criminological research is often based on time-series data showing some type of trend movement. Trending time-series may correlate strongly even in cases where no causal relationship exists (spurious causality). To avoid this problem researchers often apply some technique of detrending their data, such as by differencing the series. This approach, however, may bring up another problem: that of spurious non-causality. Both problems can, in principle, be avoided if the series under investigation are “difference-stationary” (if the trend movements are stochastic) and “cointegrated” (if the stochastically changing trendmovements in different variables correspond to each other). The article gives a brief introduction to key instruments and interpretative tools applied in cointegration modelling.","PeriodicalId":45781,"journal":{"name":"International Journal of Conflict and Violence","volume":"8 1","pages":"199-208"},"PeriodicalIF":0.4000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cointegration and Error Correction Modelling in Time-Series Analysis: A Brief Introduction\",\"authors\":\"Helmut Thome\",\"doi\":\"10.4119/UNIBI/IJCV.475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Criminological research is often based on time-series data showing some type of trend movement. Trending time-series may correlate strongly even in cases where no causal relationship exists (spurious causality). To avoid this problem researchers often apply some technique of detrending their data, such as by differencing the series. This approach, however, may bring up another problem: that of spurious non-causality. Both problems can, in principle, be avoided if the series under investigation are “difference-stationary” (if the trend movements are stochastic) and “cointegrated” (if the stochastically changing trendmovements in different variables correspond to each other). The article gives a brief introduction to key instruments and interpretative tools applied in cointegration modelling.\",\"PeriodicalId\":45781,\"journal\":{\"name\":\"International Journal of Conflict and Violence\",\"volume\":\"8 1\",\"pages\":\"199-208\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Conflict and Violence\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.4119/UNIBI/IJCV.475\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INTERNATIONAL RELATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Conflict and Violence","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.4119/UNIBI/IJCV.475","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INTERNATIONAL RELATIONS","Score":null,"Total":0}
引用次数: 3

摘要

犯罪学研究通常基于显示某种趋势运动的时间序列数据。趋势时间序列即使在不存在因果关系的情况下也可能具有很强的相关性(伪因果关系)。为了避免这个问题,研究人员经常使用一些去趋势化数据的技术,例如通过区分序列。然而,这种方法可能会带来另一个问题:虚假的非因果关系。原则上,如果所研究的序列是“差分平稳”(如果趋势运动是随机的)和“协整”(如果不同变量中随机变化的趋势运动相互对应),这两个问题都可以避免。本文简要介绍了协整建模中使用的关键工具和解释工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cointegration and Error Correction Modelling in Time-Series Analysis: A Brief Introduction
Criminological research is often based on time-series data showing some type of trend movement. Trending time-series may correlate strongly even in cases where no causal relationship exists (spurious causality). To avoid this problem researchers often apply some technique of detrending their data, such as by differencing the series. This approach, however, may bring up another problem: that of spurious non-causality. Both problems can, in principle, be avoided if the series under investigation are “difference-stationary” (if the trend movements are stochastic) and “cointegrated” (if the stochastically changing trendmovements in different variables correspond to each other). The article gives a brief introduction to key instruments and interpretative tools applied in cointegration modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
审稿时长
32 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信