{"title":"利用人工智能和综合近实时环境数据对珊瑚礁进行业务生态预报","authors":"L. Gramer, Madison Soden, J. Hendee","doi":"10.5343/bms.2022.0012","DOIUrl":null,"url":null,"abstract":"A synthesis of information products about environmental stressors provided in near real-time can serve environmental managers who seek to act decisively before stressors become unmanageable. We have created ecological forecasts, i.e., ecoforecasts, based on input from a variety of environmental sensors that report in near real-time, and we subsequently send those ecoforecasts to environmental managers. The application behind these ecoforecasts is Python-based software that uses an artificial intelligence (AI) inference engine called an expert system. The National Oceanic and Atmospheric Administration (NOAA) Environmental Information Synthesizer (NEIS), formerly the Environmental Information Synthesizer for Expert Systems (EISES), has been developed over two decades to meet the needs of environmental managers and scientists. NEIS integrates environmental data from multiple sources, including in situ and satellite sensors. The application produces ecoforecasts designed to identify environmental conditions conducive to mass coral bleaching and bleaching of specific coral species, as well as other marine environmental events such as algal blooms. This study evaluates the efficacy of coral bleaching ecoforecasts generated by NEIS for the Florida reef tract covering the years 2005–2017.","PeriodicalId":55312,"journal":{"name":"Bulletin of Marine Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operational ecoforecasting for coral reefs using artificial intelligence and integrated near real-time environmental data\",\"authors\":\"L. Gramer, Madison Soden, J. Hendee\",\"doi\":\"10.5343/bms.2022.0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A synthesis of information products about environmental stressors provided in near real-time can serve environmental managers who seek to act decisively before stressors become unmanageable. We have created ecological forecasts, i.e., ecoforecasts, based on input from a variety of environmental sensors that report in near real-time, and we subsequently send those ecoforecasts to environmental managers. The application behind these ecoforecasts is Python-based software that uses an artificial intelligence (AI) inference engine called an expert system. The National Oceanic and Atmospheric Administration (NOAA) Environmental Information Synthesizer (NEIS), formerly the Environmental Information Synthesizer for Expert Systems (EISES), has been developed over two decades to meet the needs of environmental managers and scientists. NEIS integrates environmental data from multiple sources, including in situ and satellite sensors. The application produces ecoforecasts designed to identify environmental conditions conducive to mass coral bleaching and bleaching of specific coral species, as well as other marine environmental events such as algal blooms. This study evaluates the efficacy of coral bleaching ecoforecasts generated by NEIS for the Florida reef tract covering the years 2005–2017.\",\"PeriodicalId\":55312,\"journal\":{\"name\":\"Bulletin of Marine Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Marine Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5343/bms.2022.0012\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5343/bms.2022.0012","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Operational ecoforecasting for coral reefs using artificial intelligence and integrated near real-time environmental data
A synthesis of information products about environmental stressors provided in near real-time can serve environmental managers who seek to act decisively before stressors become unmanageable. We have created ecological forecasts, i.e., ecoforecasts, based on input from a variety of environmental sensors that report in near real-time, and we subsequently send those ecoforecasts to environmental managers. The application behind these ecoforecasts is Python-based software that uses an artificial intelligence (AI) inference engine called an expert system. The National Oceanic and Atmospheric Administration (NOAA) Environmental Information Synthesizer (NEIS), formerly the Environmental Information Synthesizer for Expert Systems (EISES), has been developed over two decades to meet the needs of environmental managers and scientists. NEIS integrates environmental data from multiple sources, including in situ and satellite sensors. The application produces ecoforecasts designed to identify environmental conditions conducive to mass coral bleaching and bleaching of specific coral species, as well as other marine environmental events such as algal blooms. This study evaluates the efficacy of coral bleaching ecoforecasts generated by NEIS for the Florida reef tract covering the years 2005–2017.
期刊介绍:
The Bulletin of Marine Science is a hybrid open access journal dedicated to the dissemination of research dealing with the waters of the world’s oceans. All aspects of marine science are treated by the Bulletin of Marine Science, including papers in marine biology, biological oceanography, fisheries, marine policy, applied marine physics, marine geology and geophysics, marine and atmospheric chemistry, meteorology, and physical oceanography. In most regular issues the Bulletin features separate sections on new taxa, coral reefs, and novel research gear, instrument, device, or system with potential to advance marine research (“Research Tools in Marine Science”). Additionally, the Bulletin publishes informative stand-alone artwork with accompany text in its section "Portraits of Marine Science."