基于胸部CT图像的新型冠状病毒病(COVID-19)筛查的深度学习可解释模型

E. Matsuyama
{"title":"基于胸部CT图像的新型冠状病毒病(COVID-19)筛查的深度学习可解释模型","authors":"E. Matsuyama","doi":"10.4236/jbise.2020.137014","DOIUrl":null,"url":null,"abstract":"In this article, we propose a convolutional neural network (CNN)-based model, a ResNet-50 based model, for discriminating coronavirus disease 2019 (COVID-19) from Non-COVID-19 using chest CT. We adopted the use of wavelet coefficients of the entire image without cropping any parts of the image as input to the CNN model. One of the main contributions of this study is to implement an algorithm called gradient-weighted class activation mapping to produce a heat map for visually verifying where the CNN model is looking at the image, thereby, ensuring the model is performing correctly. In order to verify the effectiveness and usefulness of the proposed method, we compare the obtained results with that obtained by using pixel values of original images as input to the CNN model. The measures used for performance evaluation include accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and Matthews correlation coefficient (MCC). The overall classification accuracy, F1 score, and MCC for the proposed method (using wavelet coefficients as input) were 92.2%, 0.915%, and 0.839%, and those for the compared method (using pixel values of the original image as input) were 88.3%, 0.876%, and 0.766%, respectively. The experiment results demonstrate the superiority of the proposed method. Moreover, as a comprehensible classification model, the interpretability of classification results was introduced. The region of interest extracted by the proposed model was visualized using heat maps and the probability score was also shown. We believe that our proposed method could provide a promising computerized toolkit to help radiologists and serve as a second eye for them to classify COVID-19 in CT scan screening examination.","PeriodicalId":64231,"journal":{"name":"生物医学工程(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Deep Learning Interpretable Model for Novel Coronavirus Disease (COVID-19) Screening with Chest CT Images\",\"authors\":\"E. Matsuyama\",\"doi\":\"10.4236/jbise.2020.137014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a convolutional neural network (CNN)-based model, a ResNet-50 based model, for discriminating coronavirus disease 2019 (COVID-19) from Non-COVID-19 using chest CT. We adopted the use of wavelet coefficients of the entire image without cropping any parts of the image as input to the CNN model. One of the main contributions of this study is to implement an algorithm called gradient-weighted class activation mapping to produce a heat map for visually verifying where the CNN model is looking at the image, thereby, ensuring the model is performing correctly. In order to verify the effectiveness and usefulness of the proposed method, we compare the obtained results with that obtained by using pixel values of original images as input to the CNN model. The measures used for performance evaluation include accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and Matthews correlation coefficient (MCC). The overall classification accuracy, F1 score, and MCC for the proposed method (using wavelet coefficients as input) were 92.2%, 0.915%, and 0.839%, and those for the compared method (using pixel values of the original image as input) were 88.3%, 0.876%, and 0.766%, respectively. The experiment results demonstrate the superiority of the proposed method. Moreover, as a comprehensible classification model, the interpretability of classification results was introduced. The region of interest extracted by the proposed model was visualized using heat maps and the probability score was also shown. We believe that our proposed method could provide a promising computerized toolkit to help radiologists and serve as a second eye for them to classify COVID-19 in CT scan screening examination.\",\"PeriodicalId\":64231,\"journal\":{\"name\":\"生物医学工程(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/jbise.2020.137014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/jbise.2020.137014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们提出了一个基于卷积神经网络(CNN)的模型,一个基于ResNet-50的模型,用于通过胸部CT区分2019冠状病毒病(COVID-19)和非COVID-19。我们采用不裁剪图像任何部分的整幅图像的小波系数作为CNN模型的输入。本研究的主要贡献之一是实现了一种称为梯度加权类激活映射的算法,用于生成热图,以直观地验证CNN模型正在查看图像的位置,从而确保模型正确执行。为了验证所提方法的有效性和实用性,我们将得到的结果与使用原始图像的像素值作为CNN模型输入得到的结果进行了比较。用于性能评价的指标包括准确性、敏感性、特异性、阳性预测值、阴性预测值、F1评分、Matthews相关系数(MCC)。本文方法(以小波系数为输入)的总体分类准确率为92.2%,F1评分为0.915%,MCC为0.839%,而对比方法(以原始图像像素值为输入)的总体分类准确率为88.3%,F1评分为0.86%,MCC为0.766%。实验结果证明了该方法的优越性。此外,作为一种可理解的分类模型,引入了分类结果的可解释性。利用热图将模型提取的感兴趣区域可视化,并显示概率得分。我们认为,我们提出的方法可以为放射科医生提供一个有前途的计算机化工具包,并作为他们在CT扫描筛查检查中对COVID-19进行分类的第二眼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Interpretable Model for Novel Coronavirus Disease (COVID-19) Screening with Chest CT Images
In this article, we propose a convolutional neural network (CNN)-based model, a ResNet-50 based model, for discriminating coronavirus disease 2019 (COVID-19) from Non-COVID-19 using chest CT. We adopted the use of wavelet coefficients of the entire image without cropping any parts of the image as input to the CNN model. One of the main contributions of this study is to implement an algorithm called gradient-weighted class activation mapping to produce a heat map for visually verifying where the CNN model is looking at the image, thereby, ensuring the model is performing correctly. In order to verify the effectiveness and usefulness of the proposed method, we compare the obtained results with that obtained by using pixel values of original images as input to the CNN model. The measures used for performance evaluation include accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and Matthews correlation coefficient (MCC). The overall classification accuracy, F1 score, and MCC for the proposed method (using wavelet coefficients as input) were 92.2%, 0.915%, and 0.839%, and those for the compared method (using pixel values of the original image as input) were 88.3%, 0.876%, and 0.766%, respectively. The experiment results demonstrate the superiority of the proposed method. Moreover, as a comprehensible classification model, the interpretability of classification results was introduced. The region of interest extracted by the proposed model was visualized using heat maps and the probability score was also shown. We believe that our proposed method could provide a promising computerized toolkit to help radiologists and serve as a second eye for them to classify COVID-19 in CT scan screening examination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
900
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信