Fe73.5Cu1Nb3Si13.5B9合金非晶态热处理纳米结构形成的研究进展

M. Khalid Hossain, J. Ferdous, M. Haque, A. Hakim
{"title":"Fe73.5Cu1Nb3Si13.5B9合金非晶态热处理纳米结构形成的研究进展","authors":"M. Khalid Hossain, J. Ferdous, M. Haque, A. Hakim","doi":"10.4236/WJNSE.2015.54013","DOIUrl":null,"url":null,"abstract":"Iron-based amorphous alloys have attracted technological and scientific interests due to their excellent soft magnetic properties. The typical nanocrystalline alloy with the composition of Fe73.5Cu1Nb3Si13.5B9 known as FINEMENT has been studied for structural properties analysis. Recently, it is found that after proper annealing the amorphous alloy like Fe73.5Cu1Nb3Si13.5B9 has a transition to the nanocrystalline state, thus exhibiting good magnetic properties. The alloy in the form of ribbon of 10 mm width and 25mm thickness with the composition of Fe73.5Cu1Nb3Si13.5B9 was prepared by rapid quenching method. The prepared ribbon sample has been annealed for 30 min in a controlled way in the temperature range 490℃ - 680℃. By analyzing X-ray diffraction (XRD) patterns, various structural parameters such as lattice parameters, grain size and silicon content of the nanocrystalline Fe(Si) grains, crystallization behavior and nanocrystalline phase formation have been investigated. In the nanocrystalline state, Cu helps the nucleation of α-Fe(Si) grains while Nb controls their growth, Si and B has been used as glass forming materials. Thus on the residual amorphous, the nanometric Fe(Si) grains develops. From broadening of fundamental peaks, the optimum grain size has been determined in the range of 7 - 23 nm.","PeriodicalId":66816,"journal":{"name":"纳米科学与工程(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Development of Nanostructure Formation of Fe73.5Cu1Nb3Si13.5B9 Alloy from Amorphous State on Heat Treatment\",\"authors\":\"M. Khalid Hossain, J. Ferdous, M. Haque, A. Hakim\",\"doi\":\"10.4236/WJNSE.2015.54013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron-based amorphous alloys have attracted technological and scientific interests due to their excellent soft magnetic properties. The typical nanocrystalline alloy with the composition of Fe73.5Cu1Nb3Si13.5B9 known as FINEMENT has been studied for structural properties analysis. Recently, it is found that after proper annealing the amorphous alloy like Fe73.5Cu1Nb3Si13.5B9 has a transition to the nanocrystalline state, thus exhibiting good magnetic properties. The alloy in the form of ribbon of 10 mm width and 25mm thickness with the composition of Fe73.5Cu1Nb3Si13.5B9 was prepared by rapid quenching method. The prepared ribbon sample has been annealed for 30 min in a controlled way in the temperature range 490℃ - 680℃. By analyzing X-ray diffraction (XRD) patterns, various structural parameters such as lattice parameters, grain size and silicon content of the nanocrystalline Fe(Si) grains, crystallization behavior and nanocrystalline phase formation have been investigated. In the nanocrystalline state, Cu helps the nucleation of α-Fe(Si) grains while Nb controls their growth, Si and B has been used as glass forming materials. Thus on the residual amorphous, the nanometric Fe(Si) grains develops. From broadening of fundamental peaks, the optimum grain size has been determined in the range of 7 - 23 nm.\",\"PeriodicalId\":66816,\"journal\":{\"name\":\"纳米科学与工程(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"纳米科学与工程(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/WJNSE.2015.54013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米科学与工程(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/WJNSE.2015.54013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

铁基非晶合金由于其优异的软磁性能而引起了技术和科学的关注。本文研究了Fe73.5Cu1Nb3Si13.5B9纳米晶合金(FINEMENT)的结构性能。近年来研究发现,Fe73.5Cu1Nb3Si13.5B9等非晶态合金经过适当退火后,向纳米晶态转变,具有良好的磁性能。采用快速淬火法制备了Fe73.5Cu1Nb3Si13.5B9合金,该合金为宽10mm,厚25mm的带状合金。将制备好的带状试样在490℃~ 680℃的可控温度范围内退火30min。通过x射线衍射(XRD)分析,研究了纳米晶Fe(Si)晶粒的晶格参数、晶粒尺寸和硅含量等结构参数、晶化行为和纳米晶相形成。在纳米晶状态下,Cu有助于α-Fe(Si)晶粒的形核,Nb控制α-Fe(Si)晶粒的生长,Si和B作为玻璃形成材料。因此,在残余的非晶态上,形成了纳米级的铁(硅)晶粒。根据基峰的展宽,确定了7 ~ 23 nm范围内的最佳晶粒尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Nanostructure Formation of Fe73.5Cu1Nb3Si13.5B9 Alloy from Amorphous State on Heat Treatment
Iron-based amorphous alloys have attracted technological and scientific interests due to their excellent soft magnetic properties. The typical nanocrystalline alloy with the composition of Fe73.5Cu1Nb3Si13.5B9 known as FINEMENT has been studied for structural properties analysis. Recently, it is found that after proper annealing the amorphous alloy like Fe73.5Cu1Nb3Si13.5B9 has a transition to the nanocrystalline state, thus exhibiting good magnetic properties. The alloy in the form of ribbon of 10 mm width and 25mm thickness with the composition of Fe73.5Cu1Nb3Si13.5B9 was prepared by rapid quenching method. The prepared ribbon sample has been annealed for 30 min in a controlled way in the temperature range 490℃ - 680℃. By analyzing X-ray diffraction (XRD) patterns, various structural parameters such as lattice parameters, grain size and silicon content of the nanocrystalline Fe(Si) grains, crystallization behavior and nanocrystalline phase formation have been investigated. In the nanocrystalline state, Cu helps the nucleation of α-Fe(Si) grains while Nb controls their growth, Si and B has been used as glass forming materials. Thus on the residual amorphous, the nanometric Fe(Si) grains develops. From broadening of fundamental peaks, the optimum grain size has been determined in the range of 7 - 23 nm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
103
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信