NHPP Gompertz模型参数估计的加权非线性最小二乘方法

L. A. Turk
{"title":"NHPP Gompertz模型参数估计的加权非线性最小二乘方法","authors":"L. A. Turk","doi":"10.4172/2175-7866.1000231","DOIUrl":null,"url":null,"abstract":"With the problem of heteroscedasticity an alternative precise estimation method of the nonlinear least squares (NLS) technique is needed. Weighted nonlinear least squares estimation (WNLSE) technique is an alternative that may increase the accuracy of parameters estimation by assigning suitable weights to the time between failures data. In the present study, the traditional maximum likelihood (ML), nonlinear least squares (NLS), and weighted nonlinear least squares (WNLS) techniques are formulated to estimate the three parameters of the NHPP Gompertz model. Empirical weighting method is investigated in NHPP Gompertz model prediction process. Three real software failure data examples are provided to analyze the performance of the three considered methods of estimation. The results of this numerical study indicate the preferences to the WNLSE method with respect to the NHPP Gompertz model’s performance, also the value of the weighting factors which give the optimum solution differ according to the nature of software failure data.","PeriodicalId":91908,"journal":{"name":"Journal of information technology & software engineering","volume":"8 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Nonlinear Least Squares Technique for Parameters Estimation of the NHPP Gompertz Model\",\"authors\":\"L. A. Turk\",\"doi\":\"10.4172/2175-7866.1000231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the problem of heteroscedasticity an alternative precise estimation method of the nonlinear least squares (NLS) technique is needed. Weighted nonlinear least squares estimation (WNLSE) technique is an alternative that may increase the accuracy of parameters estimation by assigning suitable weights to the time between failures data. In the present study, the traditional maximum likelihood (ML), nonlinear least squares (NLS), and weighted nonlinear least squares (WNLS) techniques are formulated to estimate the three parameters of the NHPP Gompertz model. Empirical weighting method is investigated in NHPP Gompertz model prediction process. Three real software failure data examples are provided to analyze the performance of the three considered methods of estimation. The results of this numerical study indicate the preferences to the WNLSE method with respect to the NHPP Gompertz model’s performance, also the value of the weighting factors which give the optimum solution differ according to the nature of software failure data.\",\"PeriodicalId\":91908,\"journal\":{\"name\":\"Journal of information technology & software engineering\",\"volume\":\"8 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of information technology & software engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2175-7866.1000231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of information technology & software engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2175-7866.1000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于异方差问题,需要一种替代的非线性最小二乘(NLS)技术的精确估计方法。加权非线性最小二乘估计(加权非线性最小二乘估计)是一种通过对故障间隔时间数据分配适当的权重来提高参数估计精度的方法。本文采用极大似然(ML)、非线性最小二乘(NLS)和加权非线性最小二乘(WNLS)方法对NHPP Gompertz模型的三个参数进行估计。研究了NHPP Gompertz模型预测过程中的经验加权方法。给出了三个实际的软件故障数据实例,分析了所考虑的三种估计方法的性能。数值研究的结果表明,相对于NHPP Gompertz模型的性能,WNLSE方法更受青睐,并且给出最优解的权重因子的值根据软件故障数据的性质而不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Nonlinear Least Squares Technique for Parameters Estimation of the NHPP Gompertz Model
With the problem of heteroscedasticity an alternative precise estimation method of the nonlinear least squares (NLS) technique is needed. Weighted nonlinear least squares estimation (WNLSE) technique is an alternative that may increase the accuracy of parameters estimation by assigning suitable weights to the time between failures data. In the present study, the traditional maximum likelihood (ML), nonlinear least squares (NLS), and weighted nonlinear least squares (WNLS) techniques are formulated to estimate the three parameters of the NHPP Gompertz model. Empirical weighting method is investigated in NHPP Gompertz model prediction process. Three real software failure data examples are provided to analyze the performance of the three considered methods of estimation. The results of this numerical study indicate the preferences to the WNLSE method with respect to the NHPP Gompertz model’s performance, also the value of the weighting factors which give the optimum solution differ according to the nature of software failure data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信