{"title":"基因组工程方法的进展","authors":"A. Chhabra","doi":"10.4172/2169-0111.1000E107","DOIUrl":null,"url":null,"abstract":"Targeted genome editing is essential for functional characterization of a gene of interest. Targeted gene inactivation via homologous recombination made it feasible to create gene knockout animal models to ascertain the physiological role of the target genes; however, lower efficiency of site specific insertion of the genetically modified construct through homologous recombination has limited a wider applicability of this approach. Development of targeted gene knockdown through RNA interferce (RNAi) offered a cost effective, high-throughput alternative to homologous recombination, however, RNAi-mediated gene knockdown is incomplete, produces experiment to experiment variation, and could provide only a temporary inhibition of the gene function. Development of genome engineering methodologies utilizing nucleases linked to the guide sequences targeting a gene of interest, such as Zinc Finger Nucleases (ZFN), Transcription Activator like Effector Nucleases (TALEN) and Clustered Palindromic Repeats (CRISPR), are quite encouraging. A brief overview of recent advances in genome engineering approaches is provided with their respective advantages and limitations.","PeriodicalId":89733,"journal":{"name":"Advancements in genetic engineering","volume":"3 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2169-0111.1000E107","citationCount":"1","resultStr":"{\"title\":\"Advances in Genome Engineering Approaches\",\"authors\":\"A. Chhabra\",\"doi\":\"10.4172/2169-0111.1000E107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targeted genome editing is essential for functional characterization of a gene of interest. Targeted gene inactivation via homologous recombination made it feasible to create gene knockout animal models to ascertain the physiological role of the target genes; however, lower efficiency of site specific insertion of the genetically modified construct through homologous recombination has limited a wider applicability of this approach. Development of targeted gene knockdown through RNA interferce (RNAi) offered a cost effective, high-throughput alternative to homologous recombination, however, RNAi-mediated gene knockdown is incomplete, produces experiment to experiment variation, and could provide only a temporary inhibition of the gene function. Development of genome engineering methodologies utilizing nucleases linked to the guide sequences targeting a gene of interest, such as Zinc Finger Nucleases (ZFN), Transcription Activator like Effector Nucleases (TALEN) and Clustered Palindromic Repeats (CRISPR), are quite encouraging. A brief overview of recent advances in genome engineering approaches is provided with their respective advantages and limitations.\",\"PeriodicalId\":89733,\"journal\":{\"name\":\"Advancements in genetic engineering\",\"volume\":\"3 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2169-0111.1000E107\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advancements in genetic engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2169-0111.1000E107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advancements in genetic engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2169-0111.1000E107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Targeted genome editing is essential for functional characterization of a gene of interest. Targeted gene inactivation via homologous recombination made it feasible to create gene knockout animal models to ascertain the physiological role of the target genes; however, lower efficiency of site specific insertion of the genetically modified construct through homologous recombination has limited a wider applicability of this approach. Development of targeted gene knockdown through RNA interferce (RNAi) offered a cost effective, high-throughput alternative to homologous recombination, however, RNAi-mediated gene knockdown is incomplete, produces experiment to experiment variation, and could provide only a temporary inhibition of the gene function. Development of genome engineering methodologies utilizing nucleases linked to the guide sequences targeting a gene of interest, such as Zinc Finger Nucleases (ZFN), Transcription Activator like Effector Nucleases (TALEN) and Clustered Palindromic Repeats (CRISPR), are quite encouraging. A brief overview of recent advances in genome engineering approaches is provided with their respective advantages and limitations.