Andrinandrasana David Rasamoelina, Ivan Cík, Peter Sincak, Marián Mach, Lukás Hruska
{"title":"现代深度神经网络高效收敛结构中激活函数的大规模研究","authors":"Andrinandrasana David Rasamoelina, Ivan Cík, Peter Sincak, Marián Mach, Lukás Hruska","doi":"10.4114/intartif.vol25iss70pp95-109","DOIUrl":null,"url":null,"abstract":"Activation functions play an important role in the convergence of learning algorithms based on neural networks. Theyprovide neural networks with nonlinear ability and the possibility to fit in any complex data. However, no deep study exists in theliterature on the comportment of activation functions in modern architecture. Therefore, in this research, we compare the 18 most used activation functions on multiple datasets (CIFAR-10, CIFAR-100, CALTECH-256) using 4 different models (EfficientNet,ResNet, a variation of ResNet using the bag of tricks, and MobileNet V3). Furthermore, we explore the shape of the losslandscape of those different architectures with various activation functions. Lastly, based on the result of our experimentation,we introduce a new locally quadratic activation function namely Hytana alongside one variation Parametric Hytana whichoutperforms common activation functions and address the dying ReLU problem.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Large-Scale Study of Activation Functions in Modern Deep Neural Network Architectures for Efficient Convergence\",\"authors\":\"Andrinandrasana David Rasamoelina, Ivan Cík, Peter Sincak, Marián Mach, Lukás Hruska\",\"doi\":\"10.4114/intartif.vol25iss70pp95-109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activation functions play an important role in the convergence of learning algorithms based on neural networks. Theyprovide neural networks with nonlinear ability and the possibility to fit in any complex data. However, no deep study exists in theliterature on the comportment of activation functions in modern architecture. Therefore, in this research, we compare the 18 most used activation functions on multiple datasets (CIFAR-10, CIFAR-100, CALTECH-256) using 4 different models (EfficientNet,ResNet, a variation of ResNet using the bag of tricks, and MobileNet V3). Furthermore, we explore the shape of the losslandscape of those different architectures with various activation functions. Lastly, based on the result of our experimentation,we introduce a new locally quadratic activation function namely Hytana alongside one variation Parametric Hytana whichoutperforms common activation functions and address the dying ReLU problem.\",\"PeriodicalId\":43470,\"journal\":{\"name\":\"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/intartif.vol25iss70pp95-109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol25iss70pp95-109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Large-Scale Study of Activation Functions in Modern Deep Neural Network Architectures for Efficient Convergence
Activation functions play an important role in the convergence of learning algorithms based on neural networks. Theyprovide neural networks with nonlinear ability and the possibility to fit in any complex data. However, no deep study exists in theliterature on the comportment of activation functions in modern architecture. Therefore, in this research, we compare the 18 most used activation functions on multiple datasets (CIFAR-10, CIFAR-100, CALTECH-256) using 4 different models (EfficientNet,ResNet, a variation of ResNet using the bag of tricks, and MobileNet V3). Furthermore, we explore the shape of the losslandscape of those different architectures with various activation functions. Lastly, based on the result of our experimentation,we introduce a new locally quadratic activation function namely Hytana alongside one variation Parametric Hytana whichoutperforms common activation functions and address the dying ReLU problem.
期刊介绍:
Inteligencia Artificial is a quarterly journal promoted and sponsored by the Spanish Association for Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. Particularly, the Journal welcomes: New approaches, techniques or methods to solve AI problems, which should include demonstrations of effectiveness oor improvement over existing methods. These demonstrations must be reproducible. Integration of different technologies or approaches to solve wide problems or belonging different areas. AI applications, which should describe in detail the problem or the scenario and the proposed solution, emphasizing its novelty and present a evaluation of the AI techniques that are applied. In addition to rapid publication and dissemination of unsolicited contributions, the journal is also committed to producing monographs, surveys or special issues on topics, methods or techniques of special relevance to the AI community. Inteligencia Artificial welcomes submissions written in English, Spaninsh or Portuguese. But at least, a title, summary and keywords in english should be included in each contribution.