{"title":"图的刚性与重构","authors":"G. Cornelissen, J. Kool","doi":"10.4171/JFG/76","DOIUrl":null,"url":null,"abstract":"We present measure theoretic rigidity for graphs of first Betti number b>1 in terms of measures on the boundary of a 2b-regular tree, that we make explicit in terms of the edge-adjacency and closed-walk structure of the graph. We prove that edge-reconstruction of the entire graph is equivalent to that of the \"closed walk lengths\".","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/76","citationCount":"1","resultStr":"{\"title\":\"Rigidity and reconstruction for graphs\",\"authors\":\"G. Cornelissen, J. Kool\",\"doi\":\"10.4171/JFG/76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present measure theoretic rigidity for graphs of first Betti number b>1 in terms of measures on the boundary of a 2b-regular tree, that we make explicit in terms of the edge-adjacency and closed-walk structure of the graph. We prove that edge-reconstruction of the entire graph is equivalent to that of the \\\"closed walk lengths\\\".\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JFG/76\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/76\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/76","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We present measure theoretic rigidity for graphs of first Betti number b>1 in terms of measures on the boundary of a 2b-regular tree, that we make explicit in terms of the edge-adjacency and closed-walk structure of the graph. We prove that edge-reconstruction of the entire graph is equivalent to that of the "closed walk lengths".