图的刚性与重构

IF 1.1 4区 数学 Q1 MATHEMATICS
G. Cornelissen, J. Kool
{"title":"图的刚性与重构","authors":"G. Cornelissen, J. Kool","doi":"10.4171/JFG/76","DOIUrl":null,"url":null,"abstract":"We present measure theoretic rigidity for graphs of first Betti number b>1 in terms of measures on the boundary of a 2b-regular tree, that we make explicit in terms of the edge-adjacency and closed-walk structure of the graph. We prove that edge-reconstruction of the entire graph is equivalent to that of the \"closed walk lengths\".","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/76","citationCount":"1","resultStr":"{\"title\":\"Rigidity and reconstruction for graphs\",\"authors\":\"G. Cornelissen, J. Kool\",\"doi\":\"10.4171/JFG/76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present measure theoretic rigidity for graphs of first Betti number b>1 in terms of measures on the boundary of a 2b-regular tree, that we make explicit in terms of the edge-adjacency and closed-walk structure of the graph. We prove that edge-reconstruction of the entire graph is equivalent to that of the \\\"closed walk lengths\\\".\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JFG/76\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/76\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/76","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了一阶Betti数b>1图在2b规则树边界上的测度的测度理论刚性,并通过图的边邻接性和闭行结构对其进行了显式说明。我们证明了整个图的边重构等价于“闭合行走长度”的边重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity and reconstruction for graphs
We present measure theoretic rigidity for graphs of first Betti number b>1 in terms of measures on the boundary of a 2b-regular tree, that we make explicit in terms of the edge-adjacency and closed-walk structure of the graph. We prove that edge-reconstruction of the entire graph is equivalent to that of the "closed walk lengths".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信