{"title":"分形测度的数值积分","authors":"Jens Malmquist, R. Strichartz","doi":"10.4171/JFG/60","DOIUrl":null,"url":null,"abstract":"We find estimates for the error in replacing an integral $\\int f d\\mu$ with respect to a fractal measure $\\mu$ with a discrete sum $\\sum_{x \\in E} w(x) f(x)$ over a given sample set $E$ with weights $w$. Our model is the classical Koksma-Hlawka theorem for integrals over rectangles, where the error is estimated by a product of a discrepancy that depends only on the geometry of the sample set and weights, and variance that depends only on the smoothness of $f$. We deal with p.c.f self-similar fractals, on which Kigami has constructed notions of energy and Laplacian. We develop generic results where we take the variance to be either the energy of $f$ or the $L^1$ norm of $\\Delta f$, and we show how to find the corresponding discrepancies for each variance. We work out the details for a number of interesting examples of sample sets for the Sierpinski gasket, both for the standard self-similar measure and energy measures, and for other fractals.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/60","citationCount":"1","resultStr":"{\"title\":\"Numerical integration for fractal measures\",\"authors\":\"Jens Malmquist, R. Strichartz\",\"doi\":\"10.4171/JFG/60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We find estimates for the error in replacing an integral $\\\\int f d\\\\mu$ with respect to a fractal measure $\\\\mu$ with a discrete sum $\\\\sum_{x \\\\in E} w(x) f(x)$ over a given sample set $E$ with weights $w$. Our model is the classical Koksma-Hlawka theorem for integrals over rectangles, where the error is estimated by a product of a discrepancy that depends only on the geometry of the sample set and weights, and variance that depends only on the smoothness of $f$. We deal with p.c.f self-similar fractals, on which Kigami has constructed notions of energy and Laplacian. We develop generic results where we take the variance to be either the energy of $f$ or the $L^1$ norm of $\\\\Delta f$, and we show how to find the corresponding discrepancies for each variance. We work out the details for a number of interesting examples of sample sets for the Sierpinski gasket, both for the standard self-similar measure and energy measures, and for other fractals.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JFG/60\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/60\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/60","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
我们发现在用一个给定样本集$E$上的一个权重为$w$的离散和$\sum_{x \in E} w(x) f(x)$代替一个积分$\int f d\mu$关于一个分形测度$\mu$的误差估计。我们的模型是用于矩形积分的经典Koksma-Hlawka定理,其中误差通过仅取决于样本集和权重的几何形状的差异和仅取决于$f$平滑度的方差的乘积来估计。我们处理p.c.f自相似分形,Kigami在其上构造了能量和拉普拉斯的概念。我们开发了通用结果,其中我们将方差作为$f$的能量或$\Delta f$的$L^1$范数,并且我们展示了如何找到每个方差的相应差异。我们为Sierpinski垫片的一些有趣的样本集例子,包括标准的自相似度量和能量度量,以及其他分形计算出了细节。
We find estimates for the error in replacing an integral $\int f d\mu$ with respect to a fractal measure $\mu$ with a discrete sum $\sum_{x \in E} w(x) f(x)$ over a given sample set $E$ with weights $w$. Our model is the classical Koksma-Hlawka theorem for integrals over rectangles, where the error is estimated by a product of a discrepancy that depends only on the geometry of the sample set and weights, and variance that depends only on the smoothness of $f$. We deal with p.c.f self-similar fractals, on which Kigami has constructed notions of energy and Laplacian. We develop generic results where we take the variance to be either the energy of $f$ or the $L^1$ norm of $\Delta f$, and we show how to find the corresponding discrepancies for each variance. We work out the details for a number of interesting examples of sample sets for the Sierpinski gasket, both for the standard self-similar measure and energy measures, and for other fractals.