Perron-Frobenius算子的特征函数和Hausdorff维数数值计算的新方法:在$\mathbb R^1$中的应用

IF 1.1 4区 数学 Q1 MATHEMATICS
R. S. Falk, R. Nussbaum
{"title":"Perron-Frobenius算子的特征函数和Hausdorff维数数值计算的新方法:在$\\mathbb R^1$中的应用","authors":"R. S. Falk, R. Nussbaum","doi":"10.4171/JFG/62","DOIUrl":null,"url":null,"abstract":"We develop a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In the one dimensional case, our methods require only C^3 regularity of the maps in the IFS. The key idea, which has been known in varying degrees of generality for many years, is to associate to the IFS a parametrized family of positive, linear, Perron-Frobenius operators L_s. The operators L_s can typically be studied in many different Banach spaces. Here, unlike most of the literature, we study L_s in a Banach space of real-valued, C^k functions, k >= 2; and we note that L_s is not compact, but has a strictly positive eigenfunction v_s with positive eigenvalue lambda_s equal to the spectral radius of L_s. Under appropriate assumptions on the IFS, the Hausdorff dimension of the invariant set of the IFS is the value s=s_* for which lambda_s =1. This eigenvalue problem is then approximated by a collocation method using continuous piecewise linear functions (in one dimension) or bilinear functions (in two dimensions). Using the theory of positive linear operators and explicit a priori bounds on the derivatives of the strictly positive eigenfunction v_s, we give rigorous upper and lower bounds for the Hausdorff dimension s_*, and these bounds converge to s_* as the mesh size approaches zero.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/62","citationCount":"13","resultStr":"{\"title\":\"$C^m$ Eigenfunctions of Perron–Frobenius operators and a new approach to numerical computation of Hausdorff dimension: applications in $\\\\mathbb R^1$\",\"authors\":\"R. S. Falk, R. Nussbaum\",\"doi\":\"10.4171/JFG/62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In the one dimensional case, our methods require only C^3 regularity of the maps in the IFS. The key idea, which has been known in varying degrees of generality for many years, is to associate to the IFS a parametrized family of positive, linear, Perron-Frobenius operators L_s. The operators L_s can typically be studied in many different Banach spaces. Here, unlike most of the literature, we study L_s in a Banach space of real-valued, C^k functions, k >= 2; and we note that L_s is not compact, but has a strictly positive eigenfunction v_s with positive eigenvalue lambda_s equal to the spectral radius of L_s. Under appropriate assumptions on the IFS, the Hausdorff dimension of the invariant set of the IFS is the value s=s_* for which lambda_s =1. This eigenvalue problem is then approximated by a collocation method using continuous piecewise linear functions (in one dimension) or bilinear functions (in two dimensions). Using the theory of positive linear operators and explicit a priori bounds on the derivatives of the strictly positive eigenfunction v_s, we give rigorous upper and lower bounds for the Hausdorff dimension s_*, and these bounds converge to s_* as the mesh size approaches zero.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JFG/62\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/62\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/62","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种计算迭代函数系统不变集的Hausdorff维数的新方法。在一维情况下,我们的方法只需要IFS中映射的C^3正则性。多年来,人们在不同程度上已经知道了它的关键思想,就是将一个正的、线性的、Perron-Frobenius算子L_s的参数化族与IFS联系起来。通常可以在许多不同的巴拿赫空间中研究算子L_s。这里,与大多数文献不同,我们研究了实值C^k函数的Banach空间中的L_s, k >= 2;我们注意到L_s不是紧化的,但有一个严格正的特征函数v_s,其正特征值lambda_s等于L_s的谱半径。在对IFS的适当假设下,IFS不变集的Hausdorff维数为值s=s_*,其中lambda_s =1。然后用连续分段线性函数(一维)或双线性函数(二维)的配置方法近似该特征值问题。利用正线性算子理论和严格正特征函数v_s导数的显式先验界,给出了严格的Hausdorff维s_*的上界和下界,并且当网格尺寸趋近于0时,这些上界收敛于s_*。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$C^m$ Eigenfunctions of Perron–Frobenius operators and a new approach to numerical computation of Hausdorff dimension: applications in $\mathbb R^1$
We develop a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In the one dimensional case, our methods require only C^3 regularity of the maps in the IFS. The key idea, which has been known in varying degrees of generality for many years, is to associate to the IFS a parametrized family of positive, linear, Perron-Frobenius operators L_s. The operators L_s can typically be studied in many different Banach spaces. Here, unlike most of the literature, we study L_s in a Banach space of real-valued, C^k functions, k >= 2; and we note that L_s is not compact, but has a strictly positive eigenfunction v_s with positive eigenvalue lambda_s equal to the spectral radius of L_s. Under appropriate assumptions on the IFS, the Hausdorff dimension of the invariant set of the IFS is the value s=s_* for which lambda_s =1. This eigenvalue problem is then approximated by a collocation method using continuous piecewise linear functions (in one dimension) or bilinear functions (in two dimensions). Using the theory of positive linear operators and explicit a priori bounds on the derivatives of the strictly positive eigenfunction v_s, we give rigorous upper and lower bounds for the Hausdorff dimension s_*, and these bounds converge to s_* as the mesh size approaches zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信