完全对称的阻力形成在拉伸Sierpiński垫圈上

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Patricia Alonso Ruiz, U. Freiberg, Jun Kigami
{"title":"完全对称的阻力形成在拉伸Sierpiński垫圈上","authors":"Patricia Alonso Ruiz, U. Freiberg, Jun Kigami","doi":"10.4171/JFG/61","DOIUrl":null,"url":null,"abstract":"The stretched Sierpinski gasket, SSG for short, is the space obtained by replacing every branching point of the Sierpinski gasket by an interval. It has also been called \"deformed Sierpinski gasket\" or \"Hanoi attractor\". As a result, it is the closure of a countable union of intervals and one might expect that a diffusion on SSG is essentially a kind of gluing of the Brownian motions on the intervals. In fact, there have been several works in this direction. There still remains, however, \"reminiscence\" of the Sierpinski gasket in the geometric structure of SSG and the same should therefore be expected for diffusions. This paper shows that this is the case. In this work, we identify all the completely symmetric resistance forms on SSG. A completely symmetric resistance form is a resistance form whose restriction to every contractive copy of SSG in itself is invariant under all geometrical symmetries of the copy, which constitute the symmetry group of the triangle. We prove that completely symmetric resistance forms on SSG can be sums of the Dirichlet integrals on the intervals with some particular weights, or a linear combination of a resistance form of the former kind and the standard resistance form on the Sierpinski gasket.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/61","citationCount":"14","resultStr":"{\"title\":\"Completely symmetric resistance forms on the stretched Sierpiński gasket\",\"authors\":\"Patricia Alonso Ruiz, U. Freiberg, Jun Kigami\",\"doi\":\"10.4171/JFG/61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stretched Sierpinski gasket, SSG for short, is the space obtained by replacing every branching point of the Sierpinski gasket by an interval. It has also been called \\\"deformed Sierpinski gasket\\\" or \\\"Hanoi attractor\\\". As a result, it is the closure of a countable union of intervals and one might expect that a diffusion on SSG is essentially a kind of gluing of the Brownian motions on the intervals. In fact, there have been several works in this direction. There still remains, however, \\\"reminiscence\\\" of the Sierpinski gasket in the geometric structure of SSG and the same should therefore be expected for diffusions. This paper shows that this is the case. In this work, we identify all the completely symmetric resistance forms on SSG. A completely symmetric resistance form is a resistance form whose restriction to every contractive copy of SSG in itself is invariant under all geometrical symmetries of the copy, which constitute the symmetry group of the triangle. We prove that completely symmetric resistance forms on SSG can be sums of the Dirichlet integrals on the intervals with some particular weights, or a linear combination of a resistance form of the former kind and the standard resistance form on the Sierpinski gasket.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2016-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JFG/61\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/61\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/61","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

摘要

拉伸的Sierpinski垫片,简称SSG,是将Sierpinski垫片的每个分支点替换为一个区间所得到的空间。它也被称为“变形的谢尔宾斯基垫圈”或“河内吸引器”。因此,它是区间可数并集的闭包,人们可能会认为,SSG上的扩散本质上是区间上布朗运动的一种胶合。事实上,在这个方向上已经有几项工作。然而,在SSG的几何结构中仍然存在着Sierpinski垫圈的“回忆”,因此对于扩散也应该有同样的期望。本文证明了这一点。在这项工作中,我们确定了SSG上所有完全对称的电阻形式。一个完全对称的阻力形式是在构成三角形对称群的副本的所有几何对称下,对SSG的每一个收缩副本本身的限制不变的阻力形式。证明了SSG上的完全对称电阻形式可以是具有特定权值的区间上的Dirichlet积分的和,也可以是前一类电阻形式与Sierpinski垫片上的标准电阻形式的线性组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Completely symmetric resistance forms on the stretched Sierpiński gasket
The stretched Sierpinski gasket, SSG for short, is the space obtained by replacing every branching point of the Sierpinski gasket by an interval. It has also been called "deformed Sierpinski gasket" or "Hanoi attractor". As a result, it is the closure of a countable union of intervals and one might expect that a diffusion on SSG is essentially a kind of gluing of the Brownian motions on the intervals. In fact, there have been several works in this direction. There still remains, however, "reminiscence" of the Sierpinski gasket in the geometric structure of SSG and the same should therefore be expected for diffusions. This paper shows that this is the case. In this work, we identify all the completely symmetric resistance forms on SSG. A completely symmetric resistance form is a resistance form whose restriction to every contractive copy of SSG in itself is invariant under all geometrical symmetries of the copy, which constitute the symmetry group of the triangle. We prove that completely symmetric resistance forms on SSG can be sums of the Dirichlet integrals on the intervals with some particular weights, or a linear combination of a resistance form of the former kind and the standard resistance form on the Sierpinski gasket.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信