Berenstein-Kirillov群和仙人掌群

IF 0.6 2区 数学 Q3 MATHEMATICS
Michael Chmutov, Max Glick, P. Pylyavskyy
{"title":"Berenstein-Kirillov群和仙人掌群","authors":"Michael Chmutov, Max Glick, P. Pylyavskyy","doi":"10.4171/jca/36","DOIUrl":null,"url":null,"abstract":"Berenstein and Kirillov have studied the action of Bender-Knuth moves on semistandard tableaux. Losev has studied a cactus group action in Kazhdan-Lusztig theory; in type $A$ this action can also be identified in the work of Henriques and Kamnitzer. We establish the relationship between the two actions. We show that the Berenstein-Kirillov group is a quotient of the cactus group. We use this to derive previously unknown relations in the Berenstein-Kirillov group. We also determine precise implications between subsets of relations in the two groups, which yields a presentation for cactus groups in terms of Bender-Knuth generators.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/jca/36","citationCount":"19","resultStr":"{\"title\":\"The Berenstein–Kirillov group and cactus groups\",\"authors\":\"Michael Chmutov, Max Glick, P. Pylyavskyy\",\"doi\":\"10.4171/jca/36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Berenstein and Kirillov have studied the action of Bender-Knuth moves on semistandard tableaux. Losev has studied a cactus group action in Kazhdan-Lusztig theory; in type $A$ this action can also be identified in the work of Henriques and Kamnitzer. We establish the relationship between the two actions. We show that the Berenstein-Kirillov group is a quotient of the cactus group. We use this to derive previously unknown relations in the Berenstein-Kirillov group. We also determine precise implications between subsets of relations in the two groups, which yields a presentation for cactus groups in terms of Bender-Knuth generators.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/jca/36\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jca/36\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/36","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

摘要

Berenstein和Kirillov研究了Bender-Knuth动作在半标准舞台上的作用。Losev在Kazhdan-Lusztig理论中研究了仙人掌群作用;在A型中,这种作用也可以在Henriques和Kamnitzer的著作中发现。我们建立两个动作之间的关系。证明了Berenstein-Kirillov群是仙人掌群的商。我们用它来推导Berenstein-Kirillov群中以前未知的关系。我们还确定了两组关系子集之间的精确含义,这产生了仙人掌组在Bender-Knuth生成器方面的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Berenstein–Kirillov group and cactus groups
Berenstein and Kirillov have studied the action of Bender-Knuth moves on semistandard tableaux. Losev has studied a cactus group action in Kazhdan-Lusztig theory; in type $A$ this action can also be identified in the work of Henriques and Kamnitzer. We establish the relationship between the two actions. We show that the Berenstein-Kirillov group is a quotient of the cactus group. We use this to derive previously unknown relations in the Berenstein-Kirillov group. We also determine precise implications between subsets of relations in the two groups, which yields a presentation for cactus groups in terms of Bender-Knuth generators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信