Gaudin模型的实贝特向量的单属性

IF 0.6 2区 数学 Q3 MATHEMATICS
Noah White
{"title":"Gaudin模型的实贝特向量的单属性","authors":"Noah White","doi":"10.4171/JCA/2-3-3","DOIUrl":null,"url":null,"abstract":"The Bethe algebras for the Gaudin model act on the multiplicity space of tensor products of irreducible $ \\mathfrak{gl}_r $-modules and have simple spectrum over real points. This fact is proved by Mukhin, Tarasov and Varchenko who also develop a relationship to Schubert intersections over real points. We use an extension to $ \\overline{M}_{0,n+1}(\\mathbb{R}) $ of these Schubert intersections, constructed by Speyer, to calculate the monodromy of the spectrum of the Bethe algebras. We show this monodromy is described by the action of the cactus group $ J_n $ on tensor products of irreducible $ \\mathfrak{gl}_r $-crystals.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JCA/2-3-3","citationCount":"8","resultStr":"{\"title\":\"The monodromy of real Bethe vectors for the Gaudin model\",\"authors\":\"Noah White\",\"doi\":\"10.4171/JCA/2-3-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bethe algebras for the Gaudin model act on the multiplicity space of tensor products of irreducible $ \\\\mathfrak{gl}_r $-modules and have simple spectrum over real points. This fact is proved by Mukhin, Tarasov and Varchenko who also develop a relationship to Schubert intersections over real points. We use an extension to $ \\\\overline{M}_{0,n+1}(\\\\mathbb{R}) $ of these Schubert intersections, constructed by Speyer, to calculate the monodromy of the spectrum of the Bethe algebras. We show this monodromy is described by the action of the cactus group $ J_n $ on tensor products of irreducible $ \\\\mathfrak{gl}_r $-crystals.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2015-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JCA/2-3-3\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JCA/2-3-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/2-3-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

Gaudin模型的Bethe代数作用于不可约的$ \mathfrak{gl}_r $-模的张量积的多重空间,在实点上具有简单谱。Mukhin, Tarasov和Varchenko证明了这一事实,他们也在实点上发展了与舒伯特交集的关系。我们使用扩展到$ \overline{M}_{0,n+1}(\mathbb{R}) $的这些由Speyer构造的Schubert交点来计算Bethe代数谱的单性。我们用仙人掌群$ J_n $对不可约$ \mathfrak{gl}_r $-晶体张量积的作用来描述这一单态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The monodromy of real Bethe vectors for the Gaudin model
The Bethe algebras for the Gaudin model act on the multiplicity space of tensor products of irreducible $ \mathfrak{gl}_r $-modules and have simple spectrum over real points. This fact is proved by Mukhin, Tarasov and Varchenko who also develop a relationship to Schubert intersections over real points. We use an extension to $ \overline{M}_{0,n+1}(\mathbb{R}) $ of these Schubert intersections, constructed by Speyer, to calculate the monodromy of the spectrum of the Bethe algebras. We show this monodromy is described by the action of the cactus group $ J_n $ on tensor products of irreducible $ \mathfrak{gl}_r $-crystals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信