截断移位洋晶体和乘积单晶的最高重量

IF 0.6 2区 数学 Q3 MATHEMATICS
J. Kamnitzer, P. Tingley, Ben Webster, Alex Weekes, Oded Yacobi
{"title":"截断移位洋晶体和乘积单晶的最高重量","authors":"J. Kamnitzer, P. Tingley, Ben Webster, Alex Weekes, Oded Yacobi","doi":"10.4171/JCA/32","DOIUrl":null,"url":null,"abstract":"Truncated shifted Yangians are a family of algebras which are natural quantizations of slices in the affine Grassmannian. We study the highest weight representations of these algebras. In particular, we conjecture that the possible highest weights for these algebras are described by product monomial crystals, certain natural subcrystals of Nakajima's monomials. We prove this conjecture in type A. We also place our results in the context of symplectic duality and prove a conjecture of Hikita in this situation.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JCA/32","citationCount":"31","resultStr":"{\"title\":\"Highest weights for truncated shifted Yangians and product monomial crystals\",\"authors\":\"J. Kamnitzer, P. Tingley, Ben Webster, Alex Weekes, Oded Yacobi\",\"doi\":\"10.4171/JCA/32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Truncated shifted Yangians are a family of algebras which are natural quantizations of slices in the affine Grassmannian. We study the highest weight representations of these algebras. In particular, we conjecture that the possible highest weights for these algebras are described by product monomial crystals, certain natural subcrystals of Nakajima's monomials. We prove this conjecture in type A. We also place our results in the context of symplectic duality and prove a conjecture of Hikita in this situation.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JCA/32\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JCA/32\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/32","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 31

摘要

截移扬子是仿射格拉斯曼群中片的自然量子化代数。我们研究这些代数的最高权表示。特别地,我们推测这些代数的可能的最高权值是用乘积单项式晶体,即中岛单项式的某些自然子晶体来描述的。我们在a类型中证明了这个猜想。我们还将结果放在辛对偶的背景下,并在这种情况下证明了Hikita的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highest weights for truncated shifted Yangians and product monomial crystals
Truncated shifted Yangians are a family of algebras which are natural quantizations of slices in the affine Grassmannian. We study the highest weight representations of these algebras. In particular, we conjecture that the possible highest weights for these algebras are described by product monomial crystals, certain natural subcrystals of Nakajima's monomials. We prove this conjecture in type A. We also place our results in the context of symplectic duality and prove a conjecture of Hikita in this situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信