J. Kamnitzer, P. Tingley, Ben Webster, Alex Weekes, Oded Yacobi
{"title":"截断移位洋晶体和乘积单晶的最高重量","authors":"J. Kamnitzer, P. Tingley, Ben Webster, Alex Weekes, Oded Yacobi","doi":"10.4171/JCA/32","DOIUrl":null,"url":null,"abstract":"Truncated shifted Yangians are a family of algebras which are natural quantizations of slices in the affine Grassmannian. We study the highest weight representations of these algebras. In particular, we conjecture that the possible highest weights for these algebras are described by product monomial crystals, certain natural subcrystals of Nakajima's monomials. We prove this conjecture in type A. We also place our results in the context of symplectic duality and prove a conjecture of Hikita in this situation.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JCA/32","citationCount":"31","resultStr":"{\"title\":\"Highest weights for truncated shifted Yangians and product monomial crystals\",\"authors\":\"J. Kamnitzer, P. Tingley, Ben Webster, Alex Weekes, Oded Yacobi\",\"doi\":\"10.4171/JCA/32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Truncated shifted Yangians are a family of algebras which are natural quantizations of slices in the affine Grassmannian. We study the highest weight representations of these algebras. In particular, we conjecture that the possible highest weights for these algebras are described by product monomial crystals, certain natural subcrystals of Nakajima's monomials. We prove this conjecture in type A. We also place our results in the context of symplectic duality and prove a conjecture of Hikita in this situation.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JCA/32\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JCA/32\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/32","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Highest weights for truncated shifted Yangians and product monomial crystals
Truncated shifted Yangians are a family of algebras which are natural quantizations of slices in the affine Grassmannian. We study the highest weight representations of these algebras. In particular, we conjecture that the possible highest weights for these algebras are described by product monomial crystals, certain natural subcrystals of Nakajima's monomials. We prove this conjecture in type A. We also place our results in the context of symplectic duality and prove a conjecture of Hikita in this situation.