基于Carafe算子的遥感图像形变目标深度特征融合检测

Q3 Engineering
Shenao Chen, Bingqi Wang, Chaoliang Zhong
{"title":"基于Carafe算子的遥感图像形变目标深度特征融合检测","authors":"Shenao Chen, Bingqi Wang, Chaoliang Zhong","doi":"10.4108/ew.3404","DOIUrl":null,"url":null,"abstract":"Recently, broad applications can be found in optical remote sensing images (ORSI), such as in urban planning, military mapping, field survey, and so on. Target detection is one of its important applications. In the past few years, with the wings of deep learning, the target detection algorithm based on CNN has harvested a breakthrough. However, due to the different directions and target sizes in ORSI, it will lead to poor performance if the target detection algorithm for ordinary optical images is directly applied. Therefore, how to improve the performance of the object detection model on ORSI is thorny. Aiming at solving the above problems, premised on the one-stage target detection model-RetinaNet, this paper proposes a new network structure with more efficiency and accuracy, that is, a Transformer-Based Network with Deep Feature Fusion Using Carafe Operator (TRCNet). Firstly, a PVT2 structure based on the transformer is adopted in the backbone and we apply a multi-head attention mechanism to obtain global information in optical images with complex backgrounds. Meanwhile, the depth is increased to better extract features. Secondly, we introduce the carafe operator into the FPN structure of the neck to integrate the high-level semantics with the low-level ones more efficiently to further improve its target detection performance. Experiments on our well-known public NWPU-VHR-10 and RSOD show that mAP increases by 8.4% and 1.7% respectively. Comparison with other advanced networks also witnesses that our proposed network is effective and advanced.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer-Based Object Detection with Deep Feature Fusion Using Carafe Operator in Remote Sensing Image\",\"authors\":\"Shenao Chen, Bingqi Wang, Chaoliang Zhong\",\"doi\":\"10.4108/ew.3404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, broad applications can be found in optical remote sensing images (ORSI), such as in urban planning, military mapping, field survey, and so on. Target detection is one of its important applications. In the past few years, with the wings of deep learning, the target detection algorithm based on CNN has harvested a breakthrough. However, due to the different directions and target sizes in ORSI, it will lead to poor performance if the target detection algorithm for ordinary optical images is directly applied. Therefore, how to improve the performance of the object detection model on ORSI is thorny. Aiming at solving the above problems, premised on the one-stage target detection model-RetinaNet, this paper proposes a new network structure with more efficiency and accuracy, that is, a Transformer-Based Network with Deep Feature Fusion Using Carafe Operator (TRCNet). Firstly, a PVT2 structure based on the transformer is adopted in the backbone and we apply a multi-head attention mechanism to obtain global information in optical images with complex backgrounds. Meanwhile, the depth is increased to better extract features. Secondly, we introduce the carafe operator into the FPN structure of the neck to integrate the high-level semantics with the low-level ones more efficiently to further improve its target detection performance. Experiments on our well-known public NWPU-VHR-10 and RSOD show that mAP increases by 8.4% and 1.7% respectively. Comparison with other advanced networks also witnesses that our proposed network is effective and advanced.\",\"PeriodicalId\":53458,\"journal\":{\"name\":\"EAI Endorsed Transactions on Energy Web\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Energy Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ew.3404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.3404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

近年来,光学遥感图像在城市规划、军事测绘、野外调查等方面得到了广泛的应用。目标检测是其重要的应用之一。在过去的几年里,借助深度学习的翅膀,基于CNN的目标检测算法获得了突破。但是,由于ORSI中目标的方向和大小不同,如果直接应用普通光学图像的目标检测算法,会导致性能不佳。因此,如何提高ORSI上目标检测模型的性能是一个棘手的问题。针对上述问题,本文以单阶段目标检测模型retanet为前提,提出了一种效率更高、精度更高的网络结构,即基于变压器的Carafe算子深度特征融合网络(TRCNet)。首先,在主干网中采用基于变压器的PVT2结构,采用多头注意机制获取复杂背景光学图像的全局信息;同时,增加深度以更好地提取特征。其次,我们在颈部的FPN结构中引入了卡拉夫算子,将高阶语义与低阶语义更有效地整合在一起,进一步提高了颈部的目标检测性能。在我国著名的公共NWPU-VHR-10和RSOD上的实验表明,mAP分别提高了8.4%和1.7%。与其他先进网络的比较也证明了我们所提出的网络是有效的和先进的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer-Based Object Detection with Deep Feature Fusion Using Carafe Operator in Remote Sensing Image
Recently, broad applications can be found in optical remote sensing images (ORSI), such as in urban planning, military mapping, field survey, and so on. Target detection is one of its important applications. In the past few years, with the wings of deep learning, the target detection algorithm based on CNN has harvested a breakthrough. However, due to the different directions and target sizes in ORSI, it will lead to poor performance if the target detection algorithm for ordinary optical images is directly applied. Therefore, how to improve the performance of the object detection model on ORSI is thorny. Aiming at solving the above problems, premised on the one-stage target detection model-RetinaNet, this paper proposes a new network structure with more efficiency and accuracy, that is, a Transformer-Based Network with Deep Feature Fusion Using Carafe Operator (TRCNet). Firstly, a PVT2 structure based on the transformer is adopted in the backbone and we apply a multi-head attention mechanism to obtain global information in optical images with complex backgrounds. Meanwhile, the depth is increased to better extract features. Secondly, we introduce the carafe operator into the FPN structure of the neck to integrate the high-level semantics with the low-level ones more efficiently to further improve its target detection performance. Experiments on our well-known public NWPU-VHR-10 and RSOD show that mAP increases by 8.4% and 1.7% respectively. Comparison with other advanced networks also witnesses that our proposed network is effective and advanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EAI Endorsed Transactions on Energy Web
EAI Endorsed Transactions on Energy Web Energy-Energy Engineering and Power Technology
CiteScore
2.60
自引率
0.00%
发文量
14
审稿时长
10 weeks
期刊介绍: With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信