非交换代数上模的Baer-Kaplansky定理

IF 0.6 Q3 MATHEMATICS
G. D'este, D. K. Tütüncü
{"title":"非交换代数上模的Baer-Kaplansky定理","authors":"G. D'este, D. K. Tütüncü","doi":"10.5666/KMJ.2021.61.2.213","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the Baer-Kaplansky theorem for module classes on algebras of finite representation types over a field. To do this we construct finite dimensional quiver algebras over any field.","PeriodicalId":46188,"journal":{"name":"Kyungpook Mathematical Journal","volume":"11 1","pages":"213-222"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Baer-Kaplansky Theorem for Modules over Non-commutative Algebras\",\"authors\":\"G. D'este, D. K. Tütüncü\",\"doi\":\"10.5666/KMJ.2021.61.2.213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the Baer-Kaplansky theorem for module classes on algebras of finite representation types over a field. To do this we construct finite dimensional quiver algebras over any field.\",\"PeriodicalId\":46188,\"journal\":{\"name\":\"Kyungpook Mathematical Journal\",\"volume\":\"11 1\",\"pages\":\"213-222\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyungpook Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2021.61.2.213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyungpook Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2021.61.2.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了域上有限表示代数上模类的Baer-Kaplansky定理。为此,我们在任意域上构造有限维颤振代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Baer-Kaplansky Theorem for Modules over Non-commutative Algebras
In this paper we investigate the Baer-Kaplansky theorem for module classes on algebras of finite representation types over a field. To do this we construct finite dimensional quiver algebras over any field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Kyungpook Mathematical Journal is an international journal devoted to significant research concerning all aspects of mathematics. The journal has a preference for papers having a broad interest. One volume of the journal is published every year. Each volume until volume 42 consisted of two issues; however, starting from volume 43(2003), each volume consists of four issues. Authors should strive for expository clarity and good literary style. Manuscripts should be prepared as follows. The first page must consist of a short descriptive title, followed by the name(s) and address(es) of the author(s) along with an electronic address if available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信