{"title":"D上的一个星型运算在多项式环D[X]上的两个扩展","authors":"G. Chang, Hwankoo Kim","doi":"10.5666/KMJ.2021.61.1.23","DOIUrl":null,"url":null,"abstract":"Let D be an integral domain with quotient field K, X an indeterminate over D, ∗ a star operation on D, and Cl∗(D) be the ∗-class group of D. The ∗w-operation on D is a star operation defined by I∗w = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with J∗ = D}. In this paper, we study two star operations {∗} and [∗] on D[X] defined by A{∗} = ⋂ P∈∗w-Max(D) ADP [X] and A [∗] = ( ⋂ P∈∗w-Max(D) AD[X]P [X]) ∩ AK[X]. Among other things, we show that Cl∗(D) ∼= Cl[∗](D[X]) if and only if D is integrally","PeriodicalId":46188,"journal":{"name":"Kyungpook Mathematical Journal","volume":"74 1","pages":"23-32"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Extensions of a Star Operation on D to the Polynomial Ring D[X]\",\"authors\":\"G. Chang, Hwankoo Kim\",\"doi\":\"10.5666/KMJ.2021.61.1.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let D be an integral domain with quotient field K, X an indeterminate over D, ∗ a star operation on D, and Cl∗(D) be the ∗-class group of D. The ∗w-operation on D is a star operation defined by I∗w = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with J∗ = D}. In this paper, we study two star operations {∗} and [∗] on D[X] defined by A{∗} = ⋂ P∈∗w-Max(D) ADP [X] and A [∗] = ( ⋂ P∈∗w-Max(D) AD[X]P [X]) ∩ AK[X]. Among other things, we show that Cl∗(D) ∼= Cl[∗](D[X]) if and only if D is integrally\",\"PeriodicalId\":46188,\"journal\":{\"name\":\"Kyungpook Mathematical Journal\",\"volume\":\"74 1\",\"pages\":\"23-32\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyungpook Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2021.61.1.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyungpook Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2021.61.1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Two Extensions of a Star Operation on D to the Polynomial Ring D[X]
Let D be an integral domain with quotient field K, X an indeterminate over D, ∗ a star operation on D, and Cl∗(D) be the ∗-class group of D. The ∗w-operation on D is a star operation defined by I∗w = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with J∗ = D}. In this paper, we study two star operations {∗} and [∗] on D[X] defined by A{∗} = ⋂ P∈∗w-Max(D) ADP [X] and A [∗] = ( ⋂ P∈∗w-Max(D) AD[X]P [X]) ∩ AK[X]. Among other things, we show that Cl∗(D) ∼= Cl[∗](D[X]) if and only if D is integrally
期刊介绍:
Kyungpook Mathematical Journal is an international journal devoted to significant research concerning all aspects of mathematics. The journal has a preference for papers having a broad interest. One volume of the journal is published every year. Each volume until volume 42 consisted of two issues; however, starting from volume 43(2003), each volume consists of four issues. Authors should strive for expository clarity and good literary style. Manuscripts should be prepared as follows. The first page must consist of a short descriptive title, followed by the name(s) and address(es) of the author(s) along with an electronic address if available.