Ramanujan三次连分数与12阶连分数的关系及其计算

IF 0.6 Q3 MATHEMATICS
B. R. S. Kumar, H. C. Vidya
{"title":"Ramanujan三次连分数与12阶连分数的关系及其计算","authors":"B. R. S. Kumar, H. C. Vidya","doi":"10.5666/KMJ.2018.58.2.319","DOIUrl":null,"url":null,"abstract":"In the present paper, we establish relationship between continued fraction U(−q) of order 12 and Ramanujan’s cubic continued fraction G(−q) and G(q) for n = 1, 2, 3, 5 and 7. Also we evaluate U(q) and U(−q) by using two parameters for Ramanujan’s theta-functions and their explicit values.","PeriodicalId":46188,"journal":{"name":"Kyungpook Mathematical Journal","volume":"58 1","pages":"319-332"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relations between Ramanujan's cubic continued fraction and a continued fraction of order 12 and its evaluations\",\"authors\":\"B. R. S. Kumar, H. C. Vidya\",\"doi\":\"10.5666/KMJ.2018.58.2.319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we establish relationship between continued fraction U(−q) of order 12 and Ramanujan’s cubic continued fraction G(−q) and G(q) for n = 1, 2, 3, 5 and 7. Also we evaluate U(q) and U(−q) by using two parameters for Ramanujan’s theta-functions and their explicit values.\",\"PeriodicalId\":46188,\"journal\":{\"name\":\"Kyungpook Mathematical Journal\",\"volume\":\"58 1\",\"pages\":\"319-332\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyungpook Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2018.58.2.319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyungpook Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2018.58.2.319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了n = 1、2、3、5、7时的12阶连分数U(- q)与Ramanujan的三次连分数G(- q)和G(q)之间的关系。我们还利用Ramanujan函数的两个参数及其显式值来计算U(q)和U(- q)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relations between Ramanujan's cubic continued fraction and a continued fraction of order 12 and its evaluations
In the present paper, we establish relationship between continued fraction U(−q) of order 12 and Ramanujan’s cubic continued fraction G(−q) and G(q) for n = 1, 2, 3, 5 and 7. Also we evaluate U(q) and U(−q) by using two parameters for Ramanujan’s theta-functions and their explicit values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Kyungpook Mathematical Journal is an international journal devoted to significant research concerning all aspects of mathematics. The journal has a preference for papers having a broad interest. One volume of the journal is published every year. Each volume until volume 42 consisted of two issues; however, starting from volume 43(2003), each volume consists of four issues. Authors should strive for expository clarity and good literary style. Manuscripts should be prepared as follows. The first page must consist of a short descriptive title, followed by the name(s) and address(es) of the author(s) along with an electronic address if available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信