近环强零因子图的直径、周长和着色

Pub Date : 2016-12-23 DOI:10.5666/KMJ.2016.56.4.1103
P. Das
{"title":"近环强零因子图的直径、周长和着色","authors":"P. Das","doi":"10.5666/KMJ.2016.56.4.1103","DOIUrl":null,"url":null,"abstract":". In this paper, we study a directed simple graph Γ s ( N ) for a near-ring N , where the set V ∗ ( N ) of vertices is the set of all left N -subsets of N with nonzero left annihilators and for any two distinct vertices I, J ∈ V ∗ ( N ), I is adjacent to J if and only if IJ = 0. Here, we deal with the diameter, girth and coloring of the graph Γ s ( N ). Moreover, we prove a sufficient condition for occurrence of a regular element of the near-ring N in the left annihilator of some vertex in the strong zero-divisor graph Γ s ( N ).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Diameter, Girth and Coloring of the Strong Zero‑Divisor Graph of Near‑rings\",\"authors\":\"P. Das\",\"doi\":\"10.5666/KMJ.2016.56.4.1103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study a directed simple graph Γ s ( N ) for a near-ring N , where the set V ∗ ( N ) of vertices is the set of all left N -subsets of N with nonzero left annihilators and for any two distinct vertices I, J ∈ V ∗ ( N ), I is adjacent to J if and only if IJ = 0. Here, we deal with the diameter, girth and coloring of the graph Γ s ( N ). Moreover, we prove a sufficient condition for occurrence of a regular element of the near-ring N in the left annihilator of some vertex in the strong zero-divisor graph Γ s ( N ).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2016.56.4.1103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.4.1103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

. 在这篇文章里,我们研究a导演简单graphΓs (N) for a near-ring N套V∗(N)》,哪里vertices集》是所有左派N的-subsets nonzero左annihilators和为任何两个distinct vertices I, J∈V∗(N), I '是adjacent to J如果只和如果IJ = 0。这里,我们成交直径,girth》和《coloring graphΓs (N)。而且,我们证明a sufficient condition for occurrence of a常规编程元素of near-ring N》境之左者一些vertex坚强zero-divisor graphΓs (N)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Diameter, Girth and Coloring of the Strong Zero‑Divisor Graph of Near‑rings
. In this paper, we study a directed simple graph Γ s ( N ) for a near-ring N , where the set V ∗ ( N ) of vertices is the set of all left N -subsets of N with nonzero left annihilators and for any two distinct vertices I, J ∈ V ∗ ( N ), I is adjacent to J if and only if IJ = 0. Here, we deal with the diameter, girth and coloring of the graph Γ s ( N ). Moreover, we prove a sufficient condition for occurrence of a regular element of the near-ring N in the left annihilator of some vertex in the strong zero-divisor graph Γ s ( N ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信