Marcel Celaya, Kelly Choo, G. MacGillivray, K. Seyffarth
{"title":"完全二部图的k-着色的重构","authors":"Marcel Celaya, Kelly Choo, G. MacGillivray, K. Seyffarth","doi":"10.5666/KMJ.2016.56.3.647","DOIUrl":null,"url":null,"abstract":"Let H be a graph, and k ≥ χ(H) an integer. We say that H has a cyclic Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a way that consecutive colourings, including the last and the first, agree on all vertices of H except one. The Gray code number of H is the least integer k0(H) such that H has a cyclic Gray code of its k-colourings for all k ≥ k0(H). For complete bipartite graphs, we prove that k0(K`,r) = 3 when both ` and r are odd, and k0(K`,r) = 4 otherwise.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Reconfiguring k-colourings of Complete Bipartite Graphs\",\"authors\":\"Marcel Celaya, Kelly Choo, G. MacGillivray, K. Seyffarth\",\"doi\":\"10.5666/KMJ.2016.56.3.647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let H be a graph, and k ≥ χ(H) an integer. We say that H has a cyclic Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a way that consecutive colourings, including the last and the first, agree on all vertices of H except one. The Gray code number of H is the least integer k0(H) such that H has a cyclic Gray code of its k-colourings for all k ≥ k0(H). For complete bipartite graphs, we prove that k0(K`,r) = 3 when both ` and r are odd, and k0(K`,r) = 4 otherwise.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2016.56.3.647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.3.647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconfiguring k-colourings of Complete Bipartite Graphs
Let H be a graph, and k ≥ χ(H) an integer. We say that H has a cyclic Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a way that consecutive colourings, including the last and the first, agree on all vertices of H except one. The Gray code number of H is the least integer k0(H) such that H has a cyclic Gray code of its k-colourings for all k ≥ k0(H). For complete bipartite graphs, we prove that k0(K`,r) = 3 when both ` and r are odd, and k0(K`,r) = 4 otherwise.