{"title":"关于边着色划分代数的细胞结构的注记","authors":"A. J. Kennedy, G. Muniasamy","doi":"10.5666/KMJ.2016.56.3.669","DOIUrl":null,"url":null,"abstract":"In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the Z/rZ-Edge colored partition algebras are quasi-hereditary over a field of characteristic zero which contains a primitive r root of unity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on Cellular Structure of Edge Colored Partition Algebras\",\"authors\":\"A. J. Kennedy, G. Muniasamy\",\"doi\":\"10.5666/KMJ.2016.56.3.669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the Z/rZ-Edge colored partition algebras are quasi-hereditary over a field of characteristic zero which contains a primitive r root of unity.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2016.56.3.669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.3.669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Note on Cellular Structure of Edge Colored Partition Algebras
In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the Z/rZ-Edge colored partition algebras are quasi-hereditary over a field of characteristic zero which contains a primitive r root of unity.