多集有序划分的类反转统计量和类主统计量

Pub Date : 2016-09-23 DOI:10.5666/KMJ.2016.56.3.657
Seung-Il Choi
{"title":"多集有序划分的类反转统计量和类主统计量","authors":"Seung-Il Choi","doi":"10.5666/KMJ.2016.56.3.657","DOIUrl":null,"url":null,"abstract":"Given a partition λ = (λ1, λ2, . . . , λl) of a positive integer n, let Tab(λ, k) be the set of all tabloids of shape λ whose weights range over the set of all k-compositions of n and OPλrev the set of all ordered partitions into k blocks of the multiset {1l2l−1 · · · l1}. In [2], Butler introduced an inversion-like statistic on Tab(λ, k) to show that the rankselected Möbius invariant arising from the subgroup lattice of a finite abelian p-group of type λ has nonnegative coefficients as a polynomial in p. In this paper, we introduce an inversion-like statistic on the set of ordered partitions of a multiset and construct an inversion-preserving bijection between Tab(λ, k) and OP λ̂ . When k = 2, we also introduce a major-like statistic on Tab(λ, 2) and study its connection to the inversion statistic due to Butler. 1. Ordered Partitions of a Multiset Let n be a positive integer. An ordered partition of [n] := {1, 2, . . . , n} is a disjoint union of nonempty subsets of [n], and its nonempty subsets are called blocks. Conventionally we denote by π = B1/B2/ · · · /Bk an ordered partition of [n] into k blocks, where the elements in each block are arranged in the increasing order. The set of all ordered partitions of [n] into k blocks will be denoted by OPkn. In the exactly same manner, one can define an ordered partition of a finite multiset. The set of all ordered partitions of a multiset S will be denoted by OPkS . In particular, in case where S is a multiset given by {1, · · · , 1 } {{ } c1−times , 2, · · · , 2 } {{ } c2−times , · · · · · · , l, · · · , l } {{ } cl−times }, (simply denoted by {1122 · · · ll}), we write OPk(c1,··· ,cl) for OP k S . For each π = B1/B2/ · · · /Bk ∈ OP k S , the type of π is defined by a sequence (b1(π), b2(π), · · · , bk(π)), where bi(π) is the cardinality of Received July 29, 2013; revised March 17, 2014; accepted April 11, 2014. 2010 Mathematics Subject Classification: 05A17, 05A18, 11P81.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inversion-like and Major-like Statistics of an Ordered Partition of a Multiset\",\"authors\":\"Seung-Il Choi\",\"doi\":\"10.5666/KMJ.2016.56.3.657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a partition λ = (λ1, λ2, . . . , λl) of a positive integer n, let Tab(λ, k) be the set of all tabloids of shape λ whose weights range over the set of all k-compositions of n and OPλrev the set of all ordered partitions into k blocks of the multiset {1l2l−1 · · · l1}. In [2], Butler introduced an inversion-like statistic on Tab(λ, k) to show that the rankselected Möbius invariant arising from the subgroup lattice of a finite abelian p-group of type λ has nonnegative coefficients as a polynomial in p. In this paper, we introduce an inversion-like statistic on the set of ordered partitions of a multiset and construct an inversion-preserving bijection between Tab(λ, k) and OP λ̂ . When k = 2, we also introduce a major-like statistic on Tab(λ, 2) and study its connection to the inversion statistic due to Butler. 1. Ordered Partitions of a Multiset Let n be a positive integer. An ordered partition of [n] := {1, 2, . . . , n} is a disjoint union of nonempty subsets of [n], and its nonempty subsets are called blocks. Conventionally we denote by π = B1/B2/ · · · /Bk an ordered partition of [n] into k blocks, where the elements in each block are arranged in the increasing order. The set of all ordered partitions of [n] into k blocks will be denoted by OPkn. In the exactly same manner, one can define an ordered partition of a finite multiset. The set of all ordered partitions of a multiset S will be denoted by OPkS . In particular, in case where S is a multiset given by {1, · · · , 1 } {{ } c1−times , 2, · · · , 2 } {{ } c2−times , · · · · · · , l, · · · , l } {{ } cl−times }, (simply denoted by {1122 · · · ll}), we write OPk(c1,··· ,cl) for OP k S . For each π = B1/B2/ · · · /Bk ∈ OP k S , the type of π is defined by a sequence (b1(π), b2(π), · · · , bk(π)), where bi(π) is the cardinality of Received July 29, 2013; revised March 17, 2014; accepted April 11, 2014. 2010 Mathematics Subject Classification: 05A17, 05A18, 11P81.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2016.56.3.657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.3.657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个划分λ = (λ1, λ2,…, λl)为正整数n,设Tab(λ, k)为所有形状为λ的小报的集合,其权重范围为n的所有k个组合的集合,opλ为多集{1l2l−1···l1}的所有有序分区的集合。在[2]中,Butler在Tab(λ, k)上引入了一个类反转统计量,证明了由λ型有限阿贝尔p群的子群格产生的秩选择Möbius不变量在p上具有非负系数的多项式。本文在多集的有序划分集上引入了一个类反转统计量,并构造了Tab(λ, k)与OP λ λ之间的保反转双射。当k = 2时,我们还在表(λ, 2)上引入了一个类主统计量,并研究了它与由于Butler的反演统计量的联系。多集的有序分区设n为正整数。[n]的有序划分:={1,2,…, n}是[n]的非空子集的不相交并,它的非空子集称为块。通常我们用π = B1/B2/···/Bk表示[n]有序划分为k个块,其中每个块中的元素按递增顺序排列。将[n]的所有有序分区分成k个块的集合记为OPkn。用完全相同的方法,我们可以定义有限多集的有序划分。多集S的所有有序分区的集合用opk表示。特别地,当S是由{1,···,1}{{}c1−乘以,2,···,2}{{}c2−乘以,····,l,···,l} {{} cl−乘以}(简记为{1122···ll})给出的多集时,我们写出OPk(c1,···,cl)对于OPk S。对于每个π = B1/B2/···/Bk∈OP k S, π的类型定义为一个序列(B1 (π), B2 (π),···,Bk (π)),其中bi(π)为Received July 29, 2013的基数;2014年3月17日修订;2014年4月11日录用。2010数学学科分类:05A17、05A18、11P81。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Inversion-like and Major-like Statistics of an Ordered Partition of a Multiset
Given a partition λ = (λ1, λ2, . . . , λl) of a positive integer n, let Tab(λ, k) be the set of all tabloids of shape λ whose weights range over the set of all k-compositions of n and OPλrev the set of all ordered partitions into k blocks of the multiset {1l2l−1 · · · l1}. In [2], Butler introduced an inversion-like statistic on Tab(λ, k) to show that the rankselected Möbius invariant arising from the subgroup lattice of a finite abelian p-group of type λ has nonnegative coefficients as a polynomial in p. In this paper, we introduce an inversion-like statistic on the set of ordered partitions of a multiset and construct an inversion-preserving bijection between Tab(λ, k) and OP λ̂ . When k = 2, we also introduce a major-like statistic on Tab(λ, 2) and study its connection to the inversion statistic due to Butler. 1. Ordered Partitions of a Multiset Let n be a positive integer. An ordered partition of [n] := {1, 2, . . . , n} is a disjoint union of nonempty subsets of [n], and its nonempty subsets are called blocks. Conventionally we denote by π = B1/B2/ · · · /Bk an ordered partition of [n] into k blocks, where the elements in each block are arranged in the increasing order. The set of all ordered partitions of [n] into k blocks will be denoted by OPkn. In the exactly same manner, one can define an ordered partition of a finite multiset. The set of all ordered partitions of a multiset S will be denoted by OPkS . In particular, in case where S is a multiset given by {1, · · · , 1 } {{ } c1−times , 2, · · · , 2 } {{ } c2−times , · · · · · · , l, · · · , l } {{ } cl−times }, (simply denoted by {1122 · · · ll}), we write OPk(c1,··· ,cl) for OP k S . For each π = B1/B2/ · · · /Bk ∈ OP k S , the type of π is defined by a sequence (b1(π), b2(π), · · · , bk(π)), where bi(π) is the cardinality of Received July 29, 2013; revised March 17, 2014; accepted April 11, 2014. 2010 Mathematics Subject Classification: 05A17, 05A18, 11P81.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信