分数阶积分下调和拟凸函数的hermite - hadamard - fejsamir型不等式

Pub Date : 2016-09-23 DOI:10.5666/KMJ.2016.56.3.845
I. Işcan, M. Kunt
{"title":"分数阶积分下调和拟凸函数的hermite - hadamard - fejsamir型不等式","authors":"I. Işcan, M. Kunt","doi":"10.5666/KMJ.2016.56.3.845","DOIUrl":null,"url":null,"abstract":". In this paper, some Hermite-Hadamard-Fej(cid:19)er type integral inequalities for harmonically quasi-convex functions in fractional integral forms have been obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Hermite-Hadamard-Fejér Type Inequalities for Harmonically Quasi-convex Functions via Fractional Integrals\",\"authors\":\"I. Işcan, M. Kunt\",\"doi\":\"10.5666/KMJ.2016.56.3.845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, some Hermite-Hadamard-Fej(cid:19)er type integral inequalities for harmonically quasi-convex functions in fractional integral forms have been obtained.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2016.56.3.845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.3.845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

. 本文得到了分数阶积分形式的调和拟凸函数的Hermite-Hadamard-Fej(cid:19)er型积分不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hermite-Hadamard-Fejér Type Inequalities for Harmonically Quasi-convex Functions via Fractional Integrals
. In this paper, some Hermite-Hadamard-Fej(cid:19)er type integral inequalities for harmonically quasi-convex functions in fractional integral forms have been obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信