g向量值序列空间帧

Pub Date : 2016-09-23 DOI:10.5666/KMJ.2016.56.3.793
E. Osgooei
{"title":"g向量值序列空间帧","authors":"E. Osgooei","doi":"10.5666/KMJ.2016.56.3.793","DOIUrl":null,"url":null,"abstract":"G-vector-valued sequence space frames and g-Banach frames for Banach spaces are introduced and studied in this paper. Also, the concepts of duality mapping and β-dual of a BK-space are used to define frame mapping and synthesis operator of these frames, respectively. Finally, some results regarding the existence of g-vector-valued sequence space frames and g-Banach frames are obtained. In particular, it is proved that if X is a separable Banach space and Y is a Banach space with a Schauder basis, then there exist a Y -valued sequence space Yv and a g-Banach frame for X with respect to Y and Yv.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"G-vector-valued Sequence Space Frames\",\"authors\":\"E. Osgooei\",\"doi\":\"10.5666/KMJ.2016.56.3.793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"G-vector-valued sequence space frames and g-Banach frames for Banach spaces are introduced and studied in this paper. Also, the concepts of duality mapping and β-dual of a BK-space are used to define frame mapping and synthesis operator of these frames, respectively. Finally, some results regarding the existence of g-vector-valued sequence space frames and g-Banach frames are obtained. In particular, it is proved that if X is a separable Banach space and Y is a Banach space with a Schauder basis, then there exist a Y -valued sequence space Yv and a g-Banach frame for X with respect to Y and Yv.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2016.56.3.793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.3.793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并研究了g向量值序列空间的帧和g-Banach空间的帧。同时,利用bk空间的对偶映射和β-对偶概念分别定义了帧映射和这些帧的合成算子。最后,得到了关于g-向量值序列空间框架和g-Banach框架存在性的一些结果。特别地,证明了如果X是可分离的Banach空间,Y是具有Schauder基的Banach空间,则存在一个Y值序列空间Yv和X相对于Y和Yv的g-Banach坐标系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
G-vector-valued Sequence Space Frames
G-vector-valued sequence space frames and g-Banach frames for Banach spaces are introduced and studied in this paper. Also, the concepts of duality mapping and β-dual of a BK-space are used to define frame mapping and synthesis operator of these frames, respectively. Finally, some results regarding the existence of g-vector-valued sequence space frames and g-Banach frames are obtained. In particular, it is proved that if X is a separable Banach space and Y is a Banach space with a Schauder basis, then there exist a Y -valued sequence space Yv and a g-Banach frame for X with respect to Y and Yv.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信