非平坦复空间形式实数超曲面上Reeb向量场的Jacobi算子

IF 0.6 Q3 MATHEMATICS
U. Ki, Soo-Jin Kim, Hiroyuki Kurihara
{"title":"非平坦复空间形式实数超曲面上Reeb向量场的Jacobi算子","authors":"U. Ki, Soo-Jin Kim, Hiroyuki Kurihara","doi":"10.5666/KMJ.2016.56.2.541","DOIUrl":null,"url":null,"abstract":"Let M be a real hypersurface of a complex space form with almost contact metric structure (φ, ξ, η, g). In this paper, we prove that if the structure Jacobi operator Rξ = R(·, ξ)ξ is φ∇ξξ-parallel and Rξ commute with the structure tensor φ, then M is a homogeneous real hypersurface of Type A provided that TrRξ is constant.","PeriodicalId":46188,"journal":{"name":"Kyungpook Mathematical Journal","volume":"3 1","pages":"541-575"},"PeriodicalIF":0.6000,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form\",\"authors\":\"U. Ki, Soo-Jin Kim, Hiroyuki Kurihara\",\"doi\":\"10.5666/KMJ.2016.56.2.541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let M be a real hypersurface of a complex space form with almost contact metric structure (φ, ξ, η, g). In this paper, we prove that if the structure Jacobi operator Rξ = R(·, ξ)ξ is φ∇ξξ-parallel and Rξ commute with the structure tensor φ, then M is a homogeneous real hypersurface of Type A provided that TrRξ is constant.\",\"PeriodicalId\":46188,\"journal\":{\"name\":\"Kyungpook Mathematical Journal\",\"volume\":\"3 1\",\"pages\":\"541-575\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyungpook Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2016.56.2.541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyungpook Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.2.541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设M是具有近似接触度量结构(φ, ξ, η, g)的复空间形式的实超曲面。本文证明了如果结构Jacobi算子Rξ = R(·,ξ)ξ是φ∇ξ -平行且Rξ与结构张量φ交换,则M是在TrRξ为常数的条件下的a型齐次实超曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form
Let M be a real hypersurface of a complex space form with almost contact metric structure (φ, ξ, η, g). In this paper, we prove that if the structure Jacobi operator Rξ = R(·, ξ)ξ is φ∇ξξ-parallel and Rξ commute with the structure tensor φ, then M is a homogeneous real hypersurface of Type A provided that TrRξ is constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Kyungpook Mathematical Journal is an international journal devoted to significant research concerning all aspects of mathematics. The journal has a preference for papers having a broad interest. One volume of the journal is published every year. Each volume until volume 42 consisted of two issues; however, starting from volume 43(2003), each volume consists of four issues. Authors should strive for expository clarity and good literary style. Manuscripts should be prepared as follows. The first page must consist of a short descriptive title, followed by the name(s) and address(es) of the author(s) along with an electronic address if available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信