{"title":"幂级数上的强干净矩阵","authors":"Huanyin Chen, H. Kose, Y. Kurtulmaz","doi":"10.5666/KMJ.2016.56.2.387","DOIUrl":null,"url":null,"abstract":"An n×n matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let A(x) ∈ Mn ( R[[x]] ) . We prove, in this note, that A(x) ∈ Mn ( R[[x]] ) is strongly clean if and only if A(0) ∈ Mn(R) is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.","PeriodicalId":46188,"journal":{"name":"Kyungpook Mathematical Journal","volume":"56 1","pages":"387-396"},"PeriodicalIF":0.6000,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly Clean Matrices Over Power Series\",\"authors\":\"Huanyin Chen, H. Kose, Y. Kurtulmaz\",\"doi\":\"10.5666/KMJ.2016.56.2.387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An n×n matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let A(x) ∈ Mn ( R[[x]] ) . We prove, in this note, that A(x) ∈ Mn ( R[[x]] ) is strongly clean if and only if A(0) ∈ Mn(R) is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.\",\"PeriodicalId\":46188,\"journal\":{\"name\":\"Kyungpook Mathematical Journal\",\"volume\":\"56 1\",\"pages\":\"387-396\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyungpook Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2016.56.2.387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyungpook Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.2.387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
An n×n matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let A(x) ∈ Mn ( R[[x]] ) . We prove, in this note, that A(x) ∈ Mn ( R[[x]] ) is strongly clean if and only if A(0) ∈ Mn(R) is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.
期刊介绍:
Kyungpook Mathematical Journal is an international journal devoted to significant research concerning all aspects of mathematics. The journal has a preference for papers having a broad interest. One volume of the journal is published every year. Each volume until volume 42 consisted of two issues; however, starting from volume 43(2003), each volume consists of four issues. Authors should strive for expository clarity and good literary style. Manuscripts should be prepared as follows. The first page must consist of a short descriptive title, followed by the name(s) and address(es) of the author(s) along with an electronic address if available.