幂级数上的强干净矩阵

IF 0.6 Q3 MATHEMATICS
Huanyin Chen, H. Kose, Y. Kurtulmaz
{"title":"幂级数上的强干净矩阵","authors":"Huanyin Chen, H. Kose, Y. Kurtulmaz","doi":"10.5666/KMJ.2016.56.2.387","DOIUrl":null,"url":null,"abstract":"An n×n matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let A(x) ∈ Mn ( R[[x]] ) . We prove, in this note, that A(x) ∈ Mn ( R[[x]] ) is strongly clean if and only if A(0) ∈ Mn(R) is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.","PeriodicalId":46188,"journal":{"name":"Kyungpook Mathematical Journal","volume":"56 1","pages":"387-396"},"PeriodicalIF":0.6000,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly Clean Matrices Over Power Series\",\"authors\":\"Huanyin Chen, H. Kose, Y. Kurtulmaz\",\"doi\":\"10.5666/KMJ.2016.56.2.387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An n×n matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let A(x) ∈ Mn ( R[[x]] ) . We prove, in this note, that A(x) ∈ Mn ( R[[x]] ) is strongly clean if and only if A(0) ∈ Mn(R) is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.\",\"PeriodicalId\":46188,\"journal\":{\"name\":\"Kyungpook Mathematical Journal\",\"volume\":\"56 1\",\"pages\":\"387-396\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyungpook Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2016.56.2.387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyungpook Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.2.387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

交换环上的n×n矩阵A是强清洁的,只要它可以写成幂等矩阵和可逆交换矩阵的和。设R为任意交换环,设A(x)∈Mn (R[[x]])。本文证明,当且仅当A(0)∈Mn(R)是强干净的,则A(x)∈Mn(R [[x]])是强干净的。幂级数商环上的强干净矩阵也被确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly Clean Matrices Over Power Series
An n×n matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let A(x) ∈ Mn ( R[[x]] ) . We prove, in this note, that A(x) ∈ Mn ( R[[x]] ) is strongly clean if and only if A(0) ∈ Mn(R) is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Kyungpook Mathematical Journal is an international journal devoted to significant research concerning all aspects of mathematics. The journal has a preference for papers having a broad interest. One volume of the journal is published every year. Each volume until volume 42 consisted of two issues; however, starting from volume 43(2003), each volume consists of four issues. Authors should strive for expository clarity and good literary style. Manuscripts should be prepared as follows. The first page must consist of a short descriptive title, followed by the name(s) and address(es) of the author(s) along with an electronic address if available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信