{"title":"论回文数","authors":"S. Bang, Yan-Quan Feng, Jaeun Lee","doi":"10.5666/KMJ.2016.56.2.349","DOIUrl":null,"url":null,"abstract":"For any integer n ≥ 2, each palindrome of n induces a circulant graph of order n. It is known that for each integer n ≥ 2, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes σ with gcd(σ) = 1 to the connected circulant graphs. It was also shown that the number of palindromes σ of n with gcd(σ) = 1 is the same number of aperiodic palindromes of n. Let an (resp. bn) be the number of aperiodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). Let cn (resp. dn) be the number of periodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). In this paper, we calculate the numbers an, bn, cn, dn in two ways. In Theorem 2.3, we find recurrence relations for an, bn, cn, dn in terms of ad for d|n and d ̸= n. Afterwards, we find formulae for an, bn, cn, dn explicitly in Theorem 2.5.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Numbers of Palindromes\",\"authors\":\"S. Bang, Yan-Quan Feng, Jaeun Lee\",\"doi\":\"10.5666/KMJ.2016.56.2.349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any integer n ≥ 2, each palindrome of n induces a circulant graph of order n. It is known that for each integer n ≥ 2, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes σ with gcd(σ) = 1 to the connected circulant graphs. It was also shown that the number of palindromes σ of n with gcd(σ) = 1 is the same number of aperiodic palindromes of n. Let an (resp. bn) be the number of aperiodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). Let cn (resp. dn) be the number of periodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). In this paper, we calculate the numbers an, bn, cn, dn in two ways. In Theorem 2.3, we find recurrence relations for an, bn, cn, dn in terms of ad for d|n and d ̸= n. Afterwards, we find formulae for an, bn, cn, dn explicitly in Theorem 2.5.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2016.56.2.349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.2.349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For any integer n ≥ 2, each palindrome of n induces a circulant graph of order n. It is known that for each integer n ≥ 2, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes σ with gcd(σ) = 1 to the connected circulant graphs. It was also shown that the number of palindromes σ of n with gcd(σ) = 1 is the same number of aperiodic palindromes of n. Let an (resp. bn) be the number of aperiodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). Let cn (resp. dn) be the number of periodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). In this paper, we calculate the numbers an, bn, cn, dn in two ways. In Theorem 2.3, we find recurrence relations for an, bn, cn, dn in terms of ad for d|n and d ̸= n. Afterwards, we find formulae for an, bn, cn, dn explicitly in Theorem 2.5.