作用于树上的局部紧群,I型猜想和不可服从的冯·诺伊曼代数

IF 1.1 3区 数学 Q1 MATHEMATICS
Cyril Houdayer, Sven Raum
{"title":"作用于树上的局部紧群,I型猜想和不可服从的冯·诺伊曼代数","authors":"Cyril Houdayer, Sven Raum","doi":"10.4171/CMH/458","DOIUrl":null,"url":null,"abstract":"We address the problem to characterise closed type I subgroups of the automorphism group of a tree. Even in the well-studied case of Burger-Mozes' universal groups, non-type I criteria were unknown. We prove that a huge class of groups acting properly on trees are not of type I. In the case of Burger-Mozes groups, this yields a complete classification of type I groups among them. Our key novelty is the use of von Neumann algebraic techniques to prove the stronger statement that the group von Neumann algebra of the groups under consideration is non-amenable.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"21 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/458","citationCount":"15","resultStr":"{\"title\":\"Locally compact groups acting on trees, the type I conjecture and non-amenable von Neumann algebras\",\"authors\":\"Cyril Houdayer, Sven Raum\",\"doi\":\"10.4171/CMH/458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem to characterise closed type I subgroups of the automorphism group of a tree. Even in the well-studied case of Burger-Mozes' universal groups, non-type I criteria were unknown. We prove that a huge class of groups acting properly on trees are not of type I. In the case of Burger-Mozes groups, this yields a complete classification of type I groups among them. Our key novelty is the use of von Neumann algebraic techniques to prove the stronger statement that the group von Neumann algebra of the groups under consideration is non-amenable.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/CMH/458\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/458\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/458","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

我们解决了刻画树的自同构群的闭I型子群的问题。即使在研究充分的Burger-Mozes普遍群体案例中,非I型标准也是未知的。我们证明了在树上正常作用的一大群群不属于I型。在Burger-Mozes群的情况下,这就得到了其中I型群的完整分类。我们的关键新颖之处在于使用冯·诺伊曼代数技术来证明一个更强的命题,即所考虑的群的群冯·诺伊曼代数是不可服从的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally compact groups acting on trees, the type I conjecture and non-amenable von Neumann algebras
We address the problem to characterise closed type I subgroups of the automorphism group of a tree. Even in the well-studied case of Burger-Mozes' universal groups, non-type I criteria were unknown. We prove that a huge class of groups acting properly on trees are not of type I. In the case of Burger-Mozes groups, this yields a complete classification of type I groups among them. Our key novelty is the use of von Neumann algebraic techniques to prove the stronger statement that the group von Neumann algebra of the groups under consideration is non-amenable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信