Camillo De Lellis, Andrea Marchese, E. Spadaro, Daniele Valtorta
{"title":"调和Q值映射奇点的可整流性和上Minkowski界","authors":"Camillo De Lellis, Andrea Marchese, E. Spadaro, Daniele Valtorta","doi":"10.4171/CMH/449","DOIUrl":null,"url":null,"abstract":"In this article we prove that the singular set of Dirichlet-minimizing $Q$-valued functions is countably $(m-2)$-rectifiable and we give upper bounds for the $(m-2)$-dimensional Minkowski content of the set of singular points with multiplicity $Q$.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2016-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/449","citationCount":"28","resultStr":"{\"title\":\"Rectifiability and upper Minkowski bounds for singularities of harmonic $Q$-valued maps\",\"authors\":\"Camillo De Lellis, Andrea Marchese, E. Spadaro, Daniele Valtorta\",\"doi\":\"10.4171/CMH/449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we prove that the singular set of Dirichlet-minimizing $Q$-valued functions is countably $(m-2)$-rectifiable and we give upper bounds for the $(m-2)$-dimensional Minkowski content of the set of singular points with multiplicity $Q$.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/CMH/449\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/449\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/449","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rectifiability and upper Minkowski bounds for singularities of harmonic $Q$-valued maps
In this article we prove that the singular set of Dirichlet-minimizing $Q$-valued functions is countably $(m-2)$-rectifiable and we give upper bounds for the $(m-2)$-dimensional Minkowski content of the set of singular points with multiplicity $Q$.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.