{"title":"拉格朗日同位素与辛函数理论","authors":"Michael Entov, Y. Ganor, Cedric Membrez","doi":"10.4171/CMH/451","DOIUrl":null,"url":null,"abstract":"We study two related invariants of Lagrangian submanifolds in symplectic manifolds. For a Lagrangian torus these invariants are functions on the first cohomology of the torus. The first invariant is of topological nature and is related to the study of Lagrangian isotopies with a given Lagrangian flux. More specifically, it measures the length of straight paths in the first cohomology that can be realized as the Lagrangian flux of a Lagrangian isotopy. The second invariant is of analytical nature and comes from symplectic function theory. It is defined for Lagrangian submanifolds admitting fibrations over a circle and has a dynamical interpretation. We partially compute these invariants for certain Lagrangian tori.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/451","citationCount":"5","resultStr":"{\"title\":\"Lagrangian isotopies and symplectic function theory\",\"authors\":\"Michael Entov, Y. Ganor, Cedric Membrez\",\"doi\":\"10.4171/CMH/451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study two related invariants of Lagrangian submanifolds in symplectic manifolds. For a Lagrangian torus these invariants are functions on the first cohomology of the torus. The first invariant is of topological nature and is related to the study of Lagrangian isotopies with a given Lagrangian flux. More specifically, it measures the length of straight paths in the first cohomology that can be realized as the Lagrangian flux of a Lagrangian isotopy. The second invariant is of analytical nature and comes from symplectic function theory. It is defined for Lagrangian submanifolds admitting fibrations over a circle and has a dynamical interpretation. We partially compute these invariants for certain Lagrangian tori.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/CMH/451\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/451\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/451","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lagrangian isotopies and symplectic function theory
We study two related invariants of Lagrangian submanifolds in symplectic manifolds. For a Lagrangian torus these invariants are functions on the first cohomology of the torus. The first invariant is of topological nature and is related to the study of Lagrangian isotopies with a given Lagrangian flux. More specifically, it measures the length of straight paths in the first cohomology that can be realized as the Lagrangian flux of a Lagrangian isotopy. The second invariant is of analytical nature and comes from symplectic function theory. It is defined for Lagrangian submanifolds admitting fibrations over a circle and has a dynamical interpretation. We partially compute these invariants for certain Lagrangian tori.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.