{"title":"关于数域上的渐近费马大定理","authors":"Mehmet Haluk Sengun, S. Siksek","doi":"10.4171/CMH/437","DOIUrl":null,"url":null,"abstract":"Assuming two deep but standard conjectures from the Langlands Programme, we prove that the asymptotic Fermat's Last Theorem holds for imaginary quadratic fields Q(\\sqrt{-d}) with -d=2, 3 mod 4. For a general number field K, again assuming standard conjectures, we give a criterion based on the solutions to a certain S-unit equation, which if satisfied implies the asymptotic Fermat's Last Theorem.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/437","citationCount":"28","resultStr":"{\"title\":\"On the asymptotic Fermat’s last theorem over number fields\",\"authors\":\"Mehmet Haluk Sengun, S. Siksek\",\"doi\":\"10.4171/CMH/437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming two deep but standard conjectures from the Langlands Programme, we prove that the asymptotic Fermat's Last Theorem holds for imaginary quadratic fields Q(\\\\sqrt{-d}) with -d=2, 3 mod 4. For a general number field K, again assuming standard conjectures, we give a criterion based on the solutions to a certain S-unit equation, which if satisfied implies the asymptotic Fermat's Last Theorem.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/CMH/437\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/437\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/437","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28
摘要
假设朗兰兹纲领中的两个深刻而标准的猜想,我们证明了渐近费马大定理对于虚二次域Q(\sqrt{d}) (d= 2,3 mod 4)成立。对于一般的数域K,同样在假设标准猜想的情况下,我们给出了一个基于s -单位方程解的判据,如果该判据满足,则暗示了渐近费马大定理。
On the asymptotic Fermat’s last theorem over number fields
Assuming two deep but standard conjectures from the Langlands Programme, we prove that the asymptotic Fermat's Last Theorem holds for imaginary quadratic fields Q(\sqrt{-d}) with -d=2, 3 mod 4. For a general number field K, again assuming standard conjectures, we give a criterion based on the solutions to a certain S-unit equation, which if satisfied implies the asymptotic Fermat's Last Theorem.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.