{"title":"实多项式的Hurwitz数","authors":"I. Itenberg, D. Zvonkine","doi":"10.4171/CMH/440","DOIUrl":null,"url":null,"abstract":"We consider the problem of defining and computing real analogs of polynomial Hurwitz numbers, in other words, the problem of counting properly normalized real polynomials with fixed ramification profiles over real branch points. We show that, provided the polynomials are counted with an appropriate sign, their number does not depend on the order of the branch points on the real line. We study generating series for the invariants thus obtained, determine necessary and sufficient conditions for the vanishing and nonvanishing of these generating series, and obtain a logarithmic asymptotic for the invariants as the degree of the polynomials tends to infinity.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/440","citationCount":"8","resultStr":"{\"title\":\"Hurwitz numbers for real polynomials\",\"authors\":\"I. Itenberg, D. Zvonkine\",\"doi\":\"10.4171/CMH/440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of defining and computing real analogs of polynomial Hurwitz numbers, in other words, the problem of counting properly normalized real polynomials with fixed ramification profiles over real branch points. We show that, provided the polynomials are counted with an appropriate sign, their number does not depend on the order of the branch points on the real line. We study generating series for the invariants thus obtained, determine necessary and sufficient conditions for the vanishing and nonvanishing of these generating series, and obtain a logarithmic asymptotic for the invariants as the degree of the polynomials tends to infinity.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/CMH/440\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/440\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/440","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We consider the problem of defining and computing real analogs of polynomial Hurwitz numbers, in other words, the problem of counting properly normalized real polynomials with fixed ramification profiles over real branch points. We show that, provided the polynomials are counted with an appropriate sign, their number does not depend on the order of the branch points on the real line. We study generating series for the invariants thus obtained, determine necessary and sufficient conditions for the vanishing and nonvanishing of these generating series, and obtain a logarithmic asymptotic for the invariants as the degree of the polynomials tends to infinity.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.