实多项式的Hurwitz数

IF 1.1 3区 数学 Q1 MATHEMATICS
I. Itenberg, D. Zvonkine
{"title":"实多项式的Hurwitz数","authors":"I. Itenberg, D. Zvonkine","doi":"10.4171/CMH/440","DOIUrl":null,"url":null,"abstract":"We consider the problem of defining and computing real analogs of polynomial Hurwitz numbers, in other words, the problem of counting properly normalized real polynomials with fixed ramification profiles over real branch points. We show that, provided the polynomials are counted with an appropriate sign, their number does not depend on the order of the branch points on the real line. We study generating series for the invariants thus obtained, determine necessary and sufficient conditions for the vanishing and nonvanishing of these generating series, and obtain a logarithmic asymptotic for the invariants as the degree of the polynomials tends to infinity.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/440","citationCount":"8","resultStr":"{\"title\":\"Hurwitz numbers for real polynomials\",\"authors\":\"I. Itenberg, D. Zvonkine\",\"doi\":\"10.4171/CMH/440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of defining and computing real analogs of polynomial Hurwitz numbers, in other words, the problem of counting properly normalized real polynomials with fixed ramification profiles over real branch points. We show that, provided the polynomials are counted with an appropriate sign, their number does not depend on the order of the branch points on the real line. We study generating series for the invariants thus obtained, determine necessary and sufficient conditions for the vanishing and nonvanishing of these generating series, and obtain a logarithmic asymptotic for the invariants as the degree of the polynomials tends to infinity.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/CMH/440\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/440\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/440","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑多项式Hurwitz数的实数类比的定义和计算问题,换句话说,计算实数分支点上具有固定分支轮廓的适当归一化实数多项式的问题。我们证明,如果多项式以适当的符号计数,它们的数量不依赖于实线上分支点的顺序。我们研究了由此得到的不变量的生成级数,确定了这些不变量的消失和不消失的充分必要条件,并得到了多项式次趋于无穷时不变量的对数渐近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hurwitz numbers for real polynomials
We consider the problem of defining and computing real analogs of polynomial Hurwitz numbers, in other words, the problem of counting properly normalized real polynomials with fixed ramification profiles over real branch points. We show that, provided the polynomials are counted with an appropriate sign, their number does not depend on the order of the branch points on the real line. We study generating series for the invariants thus obtained, determine necessary and sufficient conditions for the vanishing and nonvanishing of these generating series, and obtain a logarithmic asymptotic for the invariants as the degree of the polynomials tends to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信