广义量子拉格朗日

S. Tosto
{"title":"广义量子拉格朗日","authors":"S. Tosto","doi":"10.4236/jamp.2023.114061","DOIUrl":null,"url":null,"abstract":"The paper concerns the formulation of a Lagrangian function compliant with classical, quantum and relativistic outcomes. The literature Lagrangians are reported with modified local Lorentz transformations, or with potentials inferred directly from the relativistic metric or with geometrical meaning. In this paper the Lagrangian is formulated via the concept of quantum uncertainty only, which allows a non-deterministic approach. This theoretical frame is proven useful to merge without additional hypotheses quantum and relativistic outcomes in a straightforward way.","PeriodicalId":56629,"journal":{"name":"应用数学与应用物理(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Quantum Lagrangian\",\"authors\":\"S. Tosto\",\"doi\":\"10.4236/jamp.2023.114061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper concerns the formulation of a Lagrangian function compliant with classical, quantum and relativistic outcomes. The literature Lagrangians are reported with modified local Lorentz transformations, or with potentials inferred directly from the relativistic metric or with geometrical meaning. In this paper the Lagrangian is formulated via the concept of quantum uncertainty only, which allows a non-deterministic approach. This theoretical frame is proven useful to merge without additional hypotheses quantum and relativistic outcomes in a straightforward way.\",\"PeriodicalId\":56629,\"journal\":{\"name\":\"应用数学与应用物理(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用数学与应用物理(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/jamp.2023.114061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学与应用物理(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/jamp.2023.114061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了符合经典、量子和相对论结果的拉格朗日函数的公式。拉格朗日量的文献是用修正的局部洛伦兹变换或直接从相对论度规推断的势或几何意义来报道的。在本文中,拉格朗日量仅通过量子不确定性的概念来表述,它允许一种非确定性的方法。这个理论框架被证明可以在没有额外假设的情况下,以一种直接的方式合并量子和相对论的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Quantum Lagrangian
The paper concerns the formulation of a Lagrangian function compliant with classical, quantum and relativistic outcomes. The literature Lagrangians are reported with modified local Lorentz transformations, or with potentials inferred directly from the relativistic metric or with geometrical meaning. In this paper the Lagrangian is formulated via the concept of quantum uncertainty only, which allows a non-deterministic approach. This theoretical frame is proven useful to merge without additional hypotheses quantum and relativistic outcomes in a straightforward way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1309
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信