{"title":"轴向模式操作的对数缠绕螺旋天线激励","authors":"A. Ayorinde, S. Adekola, A. Ike Mowete","doi":"10.5455/jjee.204-1614026886","DOIUrl":null,"url":null,"abstract":"Abstract— In this paper, the axial-mode performance features of a non-uniform helix, whose non-uniformity is defined by a logarithmic variation of turns spacing along its axis, is presented. Using the classical vector potential approach, the paper rigorously formulates radiation-zone field integrals for the antenna in terms of an unknown distribution of current. Because the formulation derives from a comprehensive analytical description of this ‘log-helix’ antenna’s geometry, the unknown current distribution is readily determined with the use of the circuitgeometric properties of the Method of Moments (MoM). Subsequently, computational results reveal that as obtained with other non-uniform helical antennas the ‘log-helix’ antenna performs significantly better than the corresponding uniform helical antenna of identical axial length. As examples, a 39% increase in power gain was recorded for the log-helix over the corresponding uniform helix; whilst a 25% improvement in radiation field’s axial ratio was achieved. In addition to far-zone fields and their associated performance metrics, antenna input parameters are also computed and discussed in details in this paper. Outcomes of a comparison of the performance of the log-helix with that of an exponential helix of about the same axial profile suggest that whereas the latter has a better power gain performance, the former is superior in terms of axial ratio bandwidth performance.","PeriodicalId":29729,"journal":{"name":"Jordan Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Logarithmically-Wound Helix Antenna Excited for Axial-Mode Operations\",\"authors\":\"A. Ayorinde, S. Adekola, A. Ike Mowete\",\"doi\":\"10.5455/jjee.204-1614026886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract— In this paper, the axial-mode performance features of a non-uniform helix, whose non-uniformity is defined by a logarithmic variation of turns spacing along its axis, is presented. Using the classical vector potential approach, the paper rigorously formulates radiation-zone field integrals for the antenna in terms of an unknown distribution of current. Because the formulation derives from a comprehensive analytical description of this ‘log-helix’ antenna’s geometry, the unknown current distribution is readily determined with the use of the circuitgeometric properties of the Method of Moments (MoM). Subsequently, computational results reveal that as obtained with other non-uniform helical antennas the ‘log-helix’ antenna performs significantly better than the corresponding uniform helical antenna of identical axial length. As examples, a 39% increase in power gain was recorded for the log-helix over the corresponding uniform helix; whilst a 25% improvement in radiation field’s axial ratio was achieved. In addition to far-zone fields and their associated performance metrics, antenna input parameters are also computed and discussed in details in this paper. Outcomes of a comparison of the performance of the log-helix with that of an exponential helix of about the same axial profile suggest that whereas the latter has a better power gain performance, the former is superior in terms of axial ratio bandwidth performance.\",\"PeriodicalId\":29729,\"journal\":{\"name\":\"Jordan Journal of Electrical Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5455/jjee.204-1614026886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjee.204-1614026886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Logarithmically-Wound Helix Antenna Excited for Axial-Mode Operations
Abstract— In this paper, the axial-mode performance features of a non-uniform helix, whose non-uniformity is defined by a logarithmic variation of turns spacing along its axis, is presented. Using the classical vector potential approach, the paper rigorously formulates radiation-zone field integrals for the antenna in terms of an unknown distribution of current. Because the formulation derives from a comprehensive analytical description of this ‘log-helix’ antenna’s geometry, the unknown current distribution is readily determined with the use of the circuitgeometric properties of the Method of Moments (MoM). Subsequently, computational results reveal that as obtained with other non-uniform helical antennas the ‘log-helix’ antenna performs significantly better than the corresponding uniform helical antenna of identical axial length. As examples, a 39% increase in power gain was recorded for the log-helix over the corresponding uniform helix; whilst a 25% improvement in radiation field’s axial ratio was achieved. In addition to far-zone fields and their associated performance metrics, antenna input parameters are also computed and discussed in details in this paper. Outcomes of a comparison of the performance of the log-helix with that of an exponential helix of about the same axial profile suggest that whereas the latter has a better power gain performance, the former is superior in terms of axial ratio bandwidth performance.