数据聚类的鼠群优化器

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ibrahim Zebiri, D. Zeghida, M. Redjimi
{"title":"数据聚类的鼠群优化器","authors":"Ibrahim Zebiri, D. Zeghida, M. Redjimi","doi":"10.5455/jjcit.71-1652735477","DOIUrl":null,"url":null,"abstract":"Rat Swarm Optimization (RSO) is one of the newest swarm intelligence optimization algorithms that is inspired from the behaviors of chasing and fighting of rats in nature. In this paper we will apply the RSO to one of the most challenging problems, which is data clustering. The search capability of RSO is used here to find the best clusters centers. The proposed algorithm RSO for clustering (RSOC) is tested on several benchmarks and compared to some other optimization algorithms for data clustering including some wellknown and powerful algorithms such as Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) and other recent such as the Hybridization of Krill Herd Algorithm and harmony search (H-KHA), hybrid Harris Hawks Optimization with differential evolution (H-HHO), and Multi-Verse Optimizer (MVO). Results are validated through a bunch of measures: homogeneity, completeness, v-measure, purity, and error rate. The computational results are encouraging, Where they demonstrate the effectiveness of RSOC over other techniques.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rat Swarm Optimizer for Data Clustering\",\"authors\":\"Ibrahim Zebiri, D. Zeghida, M. Redjimi\",\"doi\":\"10.5455/jjcit.71-1652735477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rat Swarm Optimization (RSO) is one of the newest swarm intelligence optimization algorithms that is inspired from the behaviors of chasing and fighting of rats in nature. In this paper we will apply the RSO to one of the most challenging problems, which is data clustering. The search capability of RSO is used here to find the best clusters centers. The proposed algorithm RSO for clustering (RSOC) is tested on several benchmarks and compared to some other optimization algorithms for data clustering including some wellknown and powerful algorithms such as Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) and other recent such as the Hybridization of Krill Herd Algorithm and harmony search (H-KHA), hybrid Harris Hawks Optimization with differential evolution (H-HHO), and Multi-Verse Optimizer (MVO). Results are validated through a bunch of measures: homogeneity, completeness, v-measure, purity, and error rate. The computational results are encouraging, Where they demonstrate the effectiveness of RSOC over other techniques.\",\"PeriodicalId\":36757,\"journal\":{\"name\":\"Jordanian Journal of Computers and Information Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordanian Journal of Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5455/jjcit.71-1652735477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordanian Journal of Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjcit.71-1652735477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

鼠群优化算法(RSO)是一种最新的群体智能优化算法,它的灵感来自于自然界中老鼠的追逐和搏斗行为。在本文中,我们将RSO应用于最具挑战性的问题之一,即数据聚类。本文利用RSO的搜索能力来寻找最佳聚类中心。本文提出的RSO聚类算法(RSOC)在多个基准上进行了测试,并与其他一些数据聚类优化算法进行了比较,这些算法包括粒子群算法(PSO)、遗传算法(GA)以及其他一些最新的算法,如磷虾群算法和和谐搜索的杂交(H-KHA)、混合哈里斯鹰优化与差分进化(H-HHO)和多空间优化器(MVO)。结果通过一系列度量来验证:同质性、完整性、v度量、纯度和错误率。计算结果令人鼓舞,证明了RSOC相对于其他技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rat Swarm Optimizer for Data Clustering
Rat Swarm Optimization (RSO) is one of the newest swarm intelligence optimization algorithms that is inspired from the behaviors of chasing and fighting of rats in nature. In this paper we will apply the RSO to one of the most challenging problems, which is data clustering. The search capability of RSO is used here to find the best clusters centers. The proposed algorithm RSO for clustering (RSOC) is tested on several benchmarks and compared to some other optimization algorithms for data clustering including some wellknown and powerful algorithms such as Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) and other recent such as the Hybridization of Krill Herd Algorithm and harmony search (H-KHA), hybrid Harris Hawks Optimization with differential evolution (H-HHO), and Multi-Verse Optimizer (MVO). Results are validated through a bunch of measures: homogeneity, completeness, v-measure, purity, and error rate. The computational results are encouraging, Where they demonstrate the effectiveness of RSOC over other techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jordanian Journal of Computers and Information Technology
Jordanian Journal of Computers and Information Technology Computer Science-Computer Science (all)
CiteScore
3.10
自引率
25.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信