使用监督机器学习分类和降维技术的网络入侵检测系统:系统综述

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zein Ashi, Laila Aburashed, M. Qudah, A. Qusef
{"title":"使用监督机器学习分类和降维技术的网络入侵检测系统:系统综述","authors":"Zein Ashi, Laila Aburashed, M. Qudah, A. Qusef","doi":"10.5455/jjcit.71-1629527707","DOIUrl":null,"url":null,"abstract":"Protecting the confidentiality, integrity and availability of cyberspace and network (NW) assets has become an increasing concern. The rapid increase in the Internet size and the presence of new computing systems (like Cloud) are creating great incentives for intruders. Therefore, security engineers have to develop new technologies to match growing threats to NWs. New and advanced technologies have emerged to create more efficient intrusion detection systems using machine learning (ML) and dimensionality reduction techniques, to help security engineers bolster more effective NW Intrusion Detection Systems (NIDSs). This systematic review provides a comprehensive review of the most recent NIDS using the supervised ML classification and dimensionality reduction techniques, it shows how the used ML classifiers, dimensionality reduction techniques and evaluating metrics have improved NIDS construction. The key point of this study is to provide up-to-date knowledge for new interested researchers.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Network Intrusion Detection Systems Using Supervised Machine Learning Classification and Dimensionality Reduction Techniques: A Systematic Review\",\"authors\":\"Zein Ashi, Laila Aburashed, M. Qudah, A. Qusef\",\"doi\":\"10.5455/jjcit.71-1629527707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protecting the confidentiality, integrity and availability of cyberspace and network (NW) assets has become an increasing concern. The rapid increase in the Internet size and the presence of new computing systems (like Cloud) are creating great incentives for intruders. Therefore, security engineers have to develop new technologies to match growing threats to NWs. New and advanced technologies have emerged to create more efficient intrusion detection systems using machine learning (ML) and dimensionality reduction techniques, to help security engineers bolster more effective NW Intrusion Detection Systems (NIDSs). This systematic review provides a comprehensive review of the most recent NIDS using the supervised ML classification and dimensionality reduction techniques, it shows how the used ML classifiers, dimensionality reduction techniques and evaluating metrics have improved NIDS construction. The key point of this study is to provide up-to-date knowledge for new interested researchers.\",\"PeriodicalId\":36757,\"journal\":{\"name\":\"Jordanian Journal of Computers and Information Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordanian Journal of Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5455/jjcit.71-1629527707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordanian Journal of Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjcit.71-1629527707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

保护网络空间和网络(NW)资产的机密性、完整性和可用性已成为人们日益关注的问题。互联网规模的快速增长和新计算系统(如云)的出现为入侵者创造了巨大的动机。因此,安全工程师必须开发新技术来应对日益增长的核武器威胁。使用机器学习(ML)和降维技术创建更高效的入侵检测系统的新技术和先进技术已经出现,以帮助安全工程师支持更有效的西北入侵检测系统(nids)。本系统综述全面回顾了最近使用监督机器学习分类和降维技术的NIDS,展示了使用的机器学习分类器、降维技术和评估指标如何改进了NIDS的构建。本研究的重点是为新的感兴趣的研究者提供最新的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Intrusion Detection Systems Using Supervised Machine Learning Classification and Dimensionality Reduction Techniques: A Systematic Review
Protecting the confidentiality, integrity and availability of cyberspace and network (NW) assets has become an increasing concern. The rapid increase in the Internet size and the presence of new computing systems (like Cloud) are creating great incentives for intruders. Therefore, security engineers have to develop new technologies to match growing threats to NWs. New and advanced technologies have emerged to create more efficient intrusion detection systems using machine learning (ML) and dimensionality reduction techniques, to help security engineers bolster more effective NW Intrusion Detection Systems (NIDSs). This systematic review provides a comprehensive review of the most recent NIDS using the supervised ML classification and dimensionality reduction techniques, it shows how the used ML classifiers, dimensionality reduction techniques and evaluating metrics have improved NIDS construction. The key point of this study is to provide up-to-date knowledge for new interested researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jordanian Journal of Computers and Information Technology
Jordanian Journal of Computers and Information Technology Computer Science-Computer Science (all)
CiteScore
3.10
自引率
25.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信