J. Forman, Hamad Joodaki, Ali Forghani, P. Riley, Varun Bollapragada, D. Lessley, Brian Overby, Sara Heltzel, J. Kerrigan, J. Crandall, S. Yarboro, David B. Weiss
{"title":"通用巴克轿车对行人撞击的全身反应。","authors":"J. Forman, Hamad Joodaki, Ali Forghani, P. Riley, Varun Bollapragada, D. Lessley, Brian Overby, Sara Heltzel, J. Kerrigan, J. Crandall, S. Yarboro, David B. Weiss","doi":"10.4271/2015-22-0016","DOIUrl":null,"url":null,"abstract":"To serve as tools for assessing injury risk, the biofidelity of whole-body pedestrian impact dummies should be validated against reference data from full-scale pedestrian impact tests. To facilitate such evaluations, a simplified generic vehicle-buck has been recently developed that is designed to have characteristics representative of a generic small sedan. Three 40 km/h pedestrian-impact tests have been performed, wherein Post Mortem Human Surrogates (PMHS) were struck laterally in a mid-gait stance by the buck. Corridors for select trajectory measures derived from these tests have been published previously. The goal of this study is to act as a companion dataset to that study, describing the head velocities, body region accelerations (head, spine, pelvis, lower extremities), angular velocities, and buck interaction forces, and injuries observed during those tests. Scaled, transformed head accelerations exceeded 80 g prior to head contact with the windshield for two of the three tests. Head xaxis angular velocity exceeded 40 rad/s prior to head contact for all three tests. In all cases the peak resultant head velocity relative to the vehicle was greater than the initial impact speed of the vehicle. Corridors of resultant head velocity relative to the vehicle were also developed, bounded by the velocities observed in these tests combined with those predicted to occur if the PMHS necks were perfectly rigid. These results, along with the other kinematic and kinetic data presented, provide a resource for future pedestrian dummy development and evaluation.","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"59 1","pages":"401-44"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Whole-body Response for Pedestrian Impact with a Generic Sedan Buck.\",\"authors\":\"J. Forman, Hamad Joodaki, Ali Forghani, P. Riley, Varun Bollapragada, D. Lessley, Brian Overby, Sara Heltzel, J. Kerrigan, J. Crandall, S. Yarboro, David B. Weiss\",\"doi\":\"10.4271/2015-22-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To serve as tools for assessing injury risk, the biofidelity of whole-body pedestrian impact dummies should be validated against reference data from full-scale pedestrian impact tests. To facilitate such evaluations, a simplified generic vehicle-buck has been recently developed that is designed to have characteristics representative of a generic small sedan. Three 40 km/h pedestrian-impact tests have been performed, wherein Post Mortem Human Surrogates (PMHS) were struck laterally in a mid-gait stance by the buck. Corridors for select trajectory measures derived from these tests have been published previously. The goal of this study is to act as a companion dataset to that study, describing the head velocities, body region accelerations (head, spine, pelvis, lower extremities), angular velocities, and buck interaction forces, and injuries observed during those tests. Scaled, transformed head accelerations exceeded 80 g prior to head contact with the windshield for two of the three tests. Head xaxis angular velocity exceeded 40 rad/s prior to head contact for all three tests. In all cases the peak resultant head velocity relative to the vehicle was greater than the initial impact speed of the vehicle. Corridors of resultant head velocity relative to the vehicle were also developed, bounded by the velocities observed in these tests combined with those predicted to occur if the PMHS necks were perfectly rigid. These results, along with the other kinematic and kinetic data presented, provide a resource for future pedestrian dummy development and evaluation.\",\"PeriodicalId\":35289,\"journal\":{\"name\":\"Stapp car crash journal\",\"volume\":\"59 1\",\"pages\":\"401-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stapp car crash journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/2015-22-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stapp car crash journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2015-22-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Whole-body Response for Pedestrian Impact with a Generic Sedan Buck.
To serve as tools for assessing injury risk, the biofidelity of whole-body pedestrian impact dummies should be validated against reference data from full-scale pedestrian impact tests. To facilitate such evaluations, a simplified generic vehicle-buck has been recently developed that is designed to have characteristics representative of a generic small sedan. Three 40 km/h pedestrian-impact tests have been performed, wherein Post Mortem Human Surrogates (PMHS) were struck laterally in a mid-gait stance by the buck. Corridors for select trajectory measures derived from these tests have been published previously. The goal of this study is to act as a companion dataset to that study, describing the head velocities, body region accelerations (head, spine, pelvis, lower extremities), angular velocities, and buck interaction forces, and injuries observed during those tests. Scaled, transformed head accelerations exceeded 80 g prior to head contact with the windshield for two of the three tests. Head xaxis angular velocity exceeded 40 rad/s prior to head contact for all three tests. In all cases the peak resultant head velocity relative to the vehicle was greater than the initial impact speed of the vehicle. Corridors of resultant head velocity relative to the vehicle were also developed, bounded by the velocities observed in these tests combined with those predicted to occur if the PMHS necks were perfectly rigid. These results, along with the other kinematic and kinetic data presented, provide a resource for future pedestrian dummy development and evaluation.