凸凹函数的广义拟线性化与牛顿方法的扩展

Q4 Mathematics
C. Martínez-Garza
{"title":"凸凹函数的广义拟线性化与牛顿方法的扩展","authors":"C. Martínez-Garza","doi":"10.5539/JMR.V2N3P63","DOIUrl":null,"url":null,"abstract":"In this paper we use the Method of Generalized Quasilinearization to obtain Newton-like comparative schemes to solve the equation $f(x)=0$, which has an isolated zero, $x=r$ in $[a_0,b_0]\\subset \\Omega$, where $f(x) \\in C[\\Omega,\\mathbb{R}]$. Two sets of results are presented. In the first cases $f(x)$ is neither concave nor convex, but by the addition of the convex function $\\phi(x)$, convexity properties are then used on $F(x)=f(x)+\\phi(x)=0$ to show that an iterative scheme based on Generalized Quasilinearization generates two monotone sequences $\\{a_n\\}$ and $\\{b_n\\}$ that converge quadratically to $r$, the isolated zero of $f(x)=0$. The first set of results are then extended to the case where $f(x)$ admits the decomposition $f(x)=F(x)+G(x)$, where $F(x)$ and $G(x)$ are not naturally convex and concave, but are forced by adding the functions $\\Phi(x)$ and $\\Psi(x)$ with $\\Phi_{xx}(x)>0$ and $\\Psi_{xx}(x)\\leq 0$ in $\\Omega$. The existence of monotone sequences that converge quadratically to the isolated root of $f(x)=0$ in $[a_0,b_0]\\subset\\Omega$ is shown via iterative schemes relevant to Generalized Quasilinearization.","PeriodicalId":38616,"journal":{"name":"Nonlinear Studies","volume":"17 1","pages":"267-277"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5539/JMR.V2N3P63","citationCount":"1","resultStr":"{\"title\":\"Extensions to generalized quasilinearization versus Newton's method for convex-concave functions\",\"authors\":\"C. Martínez-Garza\",\"doi\":\"10.5539/JMR.V2N3P63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we use the Method of Generalized Quasilinearization to obtain Newton-like comparative schemes to solve the equation $f(x)=0$, which has an isolated zero, $x=r$ in $[a_0,b_0]\\\\subset \\\\Omega$, where $f(x) \\\\in C[\\\\Omega,\\\\mathbb{R}]$. Two sets of results are presented. In the first cases $f(x)$ is neither concave nor convex, but by the addition of the convex function $\\\\phi(x)$, convexity properties are then used on $F(x)=f(x)+\\\\phi(x)=0$ to show that an iterative scheme based on Generalized Quasilinearization generates two monotone sequences $\\\\{a_n\\\\}$ and $\\\\{b_n\\\\}$ that converge quadratically to $r$, the isolated zero of $f(x)=0$. The first set of results are then extended to the case where $f(x)$ admits the decomposition $f(x)=F(x)+G(x)$, where $F(x)$ and $G(x)$ are not naturally convex and concave, but are forced by adding the functions $\\\\Phi(x)$ and $\\\\Psi(x)$ with $\\\\Phi_{xx}(x)>0$ and $\\\\Psi_{xx}(x)\\\\leq 0$ in $\\\\Omega$. The existence of monotone sequences that converge quadratically to the isolated root of $f(x)=0$ in $[a_0,b_0]\\\\subset\\\\Omega$ is shown via iterative schemes relevant to Generalized Quasilinearization.\",\"PeriodicalId\":38616,\"journal\":{\"name\":\"Nonlinear Studies\",\"volume\":\"17 1\",\"pages\":\"267-277\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5539/JMR.V2N3P63\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/JMR.V2N3P63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/JMR.V2N3P63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文利用广义拟线性化方法得到了求解方程$f(x)=0$的类牛顿比较格式,该方程在$[a_0,b_0]\subset \Omega$中有一个孤立零$x=r$,其中$f(x) \in C[\Omega,\mathbb{R}]$。给出了两组结果。在第一种情况下$f(x)$既不凹也不凸,但通过添加凸函数$\phi(x)$,然后在$F(x)=f(x)+\phi(x)=0$上使用凸性来证明基于广义拟线性化的迭代方案生成两个单调序列$\{a_n\}$和$\{b_n\}$,它们二次收敛于$r$,即$f(x)=0$的孤立零。然后将第一组结果扩展到$f(x)$承认分解为$f(x)=F(x)+G(x)$的情况,其中$F(x)$和$G(x)$不是自然凸凹的,而是通过在$\Omega$中添加$\Phi_{xx}(x)>0$和$\Psi_{xx}(x)\leq 0$函数来强制添加$\Phi(x)$和$\Psi(x)$。通过与广义拟线性化相关的迭代格式,证明了$[a_0,b_0]\subset\Omega$中收敛于$f(x)=0$孤立根的单调序列的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extensions to generalized quasilinearization versus Newton's method for convex-concave functions
In this paper we use the Method of Generalized Quasilinearization to obtain Newton-like comparative schemes to solve the equation $f(x)=0$, which has an isolated zero, $x=r$ in $[a_0,b_0]\subset \Omega$, where $f(x) \in C[\Omega,\mathbb{R}]$. Two sets of results are presented. In the first cases $f(x)$ is neither concave nor convex, but by the addition of the convex function $\phi(x)$, convexity properties are then used on $F(x)=f(x)+\phi(x)=0$ to show that an iterative scheme based on Generalized Quasilinearization generates two monotone sequences $\{a_n\}$ and $\{b_n\}$ that converge quadratically to $r$, the isolated zero of $f(x)=0$. The first set of results are then extended to the case where $f(x)$ admits the decomposition $f(x)=F(x)+G(x)$, where $F(x)$ and $G(x)$ are not naturally convex and concave, but are forced by adding the functions $\Phi(x)$ and $\Psi(x)$ with $\Phi_{xx}(x)>0$ and $\Psi_{xx}(x)\leq 0$ in $\Omega$. The existence of monotone sequences that converge quadratically to the isolated root of $f(x)=0$ in $[a_0,b_0]\subset\Omega$ is shown via iterative schemes relevant to Generalized Quasilinearization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinear Studies
Nonlinear Studies Mathematics-Applied Mathematics
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信