A. Riessen, W. Rickard, Ross P. Williams, G. Riessen
{"title":"地聚合物配方开发及微观结构分析方法","authors":"A. Riessen, W. Rickard, Ross P. Williams, G. Riessen","doi":"10.4416/JCST2017-00065","DOIUrl":null,"url":null,"abstract":"Alkali-activated materials (AAMs) and geopolymers have been extensively studied, although widespread commercialisation has been hampered, in part, by the use of precursors that are rarely homogeneous and are generally poorly characterised. Even when precursors are well characterised, their extent of reaction during geopolymer synthesis is not well known, leading to a disparity between targeted and actual compositional ratios. Small variations in compositional ratios, particularly Si:Al, can lead to dramatic changes in physical properties. A process for characterising precursors, focussing on their reactive component, will be described here, followed by methods that can be used to determine the extent of reaction in the final product. Characterising the final product is important, but it does not reveal what processes occur between mixing the precursors and setting of the solid geopolymer. We will also describe a method that can be used to track dissolution of precursors and subsequent evolution of the alkali-activated product, thus providing a more comprehensive picture of geopolymerisation. This paper demonstrates a link between precursor characterisation and the extent of reaction in order to provide those working with alkali-activated materials with additional knowledge enabling them to manufacture reproducible, high-quality products.","PeriodicalId":48807,"journal":{"name":"Journal of Ceramic Science and Technology","volume":"37 1","pages":"421-431"},"PeriodicalIF":0.5000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Methods for geopolymer formulation development and microstructural analysis\",\"authors\":\"A. Riessen, W. Rickard, Ross P. Williams, G. Riessen\",\"doi\":\"10.4416/JCST2017-00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alkali-activated materials (AAMs) and geopolymers have been extensively studied, although widespread commercialisation has been hampered, in part, by the use of precursors that are rarely homogeneous and are generally poorly characterised. Even when precursors are well characterised, their extent of reaction during geopolymer synthesis is not well known, leading to a disparity between targeted and actual compositional ratios. Small variations in compositional ratios, particularly Si:Al, can lead to dramatic changes in physical properties. A process for characterising precursors, focussing on their reactive component, will be described here, followed by methods that can be used to determine the extent of reaction in the final product. Characterising the final product is important, but it does not reveal what processes occur between mixing the precursors and setting of the solid geopolymer. We will also describe a method that can be used to track dissolution of precursors and subsequent evolution of the alkali-activated product, thus providing a more comprehensive picture of geopolymerisation. This paper demonstrates a link between precursor characterisation and the extent of reaction in order to provide those working with alkali-activated materials with additional knowledge enabling them to manufacture reproducible, high-quality products.\",\"PeriodicalId\":48807,\"journal\":{\"name\":\"Journal of Ceramic Science and Technology\",\"volume\":\"37 1\",\"pages\":\"421-431\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ceramic Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4416/JCST2017-00065\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ceramic Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4416/JCST2017-00065","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Methods for geopolymer formulation development and microstructural analysis
Alkali-activated materials (AAMs) and geopolymers have been extensively studied, although widespread commercialisation has been hampered, in part, by the use of precursors that are rarely homogeneous and are generally poorly characterised. Even when precursors are well characterised, their extent of reaction during geopolymer synthesis is not well known, leading to a disparity between targeted and actual compositional ratios. Small variations in compositional ratios, particularly Si:Al, can lead to dramatic changes in physical properties. A process for characterising precursors, focussing on their reactive component, will be described here, followed by methods that can be used to determine the extent of reaction in the final product. Characterising the final product is important, but it does not reveal what processes occur between mixing the precursors and setting of the solid geopolymer. We will also describe a method that can be used to track dissolution of precursors and subsequent evolution of the alkali-activated product, thus providing a more comprehensive picture of geopolymerisation. This paper demonstrates a link between precursor characterisation and the extent of reaction in order to provide those working with alkali-activated materials with additional knowledge enabling them to manufacture reproducible, high-quality products.
期刊介绍:
The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.