组合流水车间与车辆路线问题的求解方法

IF 1.3 Q4 ENGINEERING, INDUSTRIAL
M. S. Nagano, Caio Paziani Tomazella, Roberto Fernandes Tavares-Neto, L. R. Abreu
{"title":"组合流水车间与车辆路线问题的求解方法","authors":"M. S. Nagano, Caio Paziani Tomazella, Roberto Fernandes Tavares-Neto, L. R. Abreu","doi":"10.5267/j.jpm.2022.1.002","DOIUrl":null,"url":null,"abstract":"The integration between production and distribution to minimize total elapsed time is an important issue for industries that produce products with a short lifespan. However, the literature focus on production environments with a single stage. This paper enhances the complexity of the production system of an integrated production and distribution system by considering flowshop environment decisions integrated with a vehicle routing problem decision. In this case, each order is produced in a permutation flowshop subsystem and then shipped to its destination by a capacitated vehicle, and the objective is to sequence these orders to minimize the makespan of the schedule. This paper uses two approaches to address this integrated problem: a mixed-integer formulation and an Iterated Greedy algorithm. The experimentation shows that the Iterated Greedy algorithm yields results with a 0.02% deviation from the optimal for problems with five jobs, and is a viable option to be used in practical cases due to its short computational time.","PeriodicalId":42333,"journal":{"name":"Journal of Project Management","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solution methods for the integrated permutation flowshop and vehicle routing problem\",\"authors\":\"M. S. Nagano, Caio Paziani Tomazella, Roberto Fernandes Tavares-Neto, L. R. Abreu\",\"doi\":\"10.5267/j.jpm.2022.1.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration between production and distribution to minimize total elapsed time is an important issue for industries that produce products with a short lifespan. However, the literature focus on production environments with a single stage. This paper enhances the complexity of the production system of an integrated production and distribution system by considering flowshop environment decisions integrated with a vehicle routing problem decision. In this case, each order is produced in a permutation flowshop subsystem and then shipped to its destination by a capacitated vehicle, and the objective is to sequence these orders to minimize the makespan of the schedule. This paper uses two approaches to address this integrated problem: a mixed-integer formulation and an Iterated Greedy algorithm. The experimentation shows that the Iterated Greedy algorithm yields results with a 0.02% deviation from the optimal for problems with five jobs, and is a viable option to be used in practical cases due to its short computational time.\",\"PeriodicalId\":42333,\"journal\":{\"name\":\"Journal of Project Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Project Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.jpm.2022.1.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Project Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.jpm.2022.1.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 2

摘要

对于生产寿命较短的产品的行业来说,集成生产和分配以最小化总消耗时间是一个重要问题。然而,文献关注的是单阶段的生产环境。本文通过将流程车间环境决策与车辆路线问题决策相结合,提高了生产配送一体化系统生产系统的复杂性。在这种情况下,每个订单都是在一个排列流车间子系统中产生的,然后由一个有能力的车辆运送到它的目的地,目标是对这些订单进行排序,以最小化计划的最大完工时间。本文使用两种方法来解决这个集成问题:混合整数公式和迭代贪心算法。实验表明,迭代贪心算法对于5个作业的问题的结果与最优结果偏差为0.02%,由于计算时间短,在实际情况下是一种可行的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution methods for the integrated permutation flowshop and vehicle routing problem
The integration between production and distribution to minimize total elapsed time is an important issue for industries that produce products with a short lifespan. However, the literature focus on production environments with a single stage. This paper enhances the complexity of the production system of an integrated production and distribution system by considering flowshop environment decisions integrated with a vehicle routing problem decision. In this case, each order is produced in a permutation flowshop subsystem and then shipped to its destination by a capacitated vehicle, and the objective is to sequence these orders to minimize the makespan of the schedule. This paper uses two approaches to address this integrated problem: a mixed-integer formulation and an Iterated Greedy algorithm. The experimentation shows that the Iterated Greedy algorithm yields results with a 0.02% deviation from the optimal for problems with five jobs, and is a viable option to be used in practical cases due to its short computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.90%
发文量
16
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信