{"title":"具有不确定设置时间的双机无等待流水作业中最小化总完成时间的改进算法","authors":"Muberra Allahverdi","doi":"10.5267/j.jpm.2021.9.001","DOIUrl":null,"url":null,"abstract":"Since scheduling literature has a wide range of uncertainties, it is crucial to take these into account when solving performance measure problems. Otherwise, the performance may severely be affected in a negative way. In this paper, an algorithm is proposed to minimize the total completion time (TCT) of a two-machine no-wait flowshop with uncertain setup times within lower and upper bounds. The results are compared to the best existing algorithm in scheduling literature: the programming language Python is used to generate random samples with respect to various distributions, and the TCT of the proposed algorithm is compared to that of the best existing one. Results reveal that the proposed one significantly outperforms the best one given in literature for all considered distributions. Specifically, the average percentage improvement of the proposed algorithm over the best existing one is over 90%. A test of hypothesis is conducted to further confirm the results.","PeriodicalId":42333,"journal":{"name":"Journal of Project Management","volume":"31 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An improved algorithm to minimize the total completion time in a two-machine no-wait flow-shop with uncertain setup times\",\"authors\":\"Muberra Allahverdi\",\"doi\":\"10.5267/j.jpm.2021.9.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since scheduling literature has a wide range of uncertainties, it is crucial to take these into account when solving performance measure problems. Otherwise, the performance may severely be affected in a negative way. In this paper, an algorithm is proposed to minimize the total completion time (TCT) of a two-machine no-wait flowshop with uncertain setup times within lower and upper bounds. The results are compared to the best existing algorithm in scheduling literature: the programming language Python is used to generate random samples with respect to various distributions, and the TCT of the proposed algorithm is compared to that of the best existing one. Results reveal that the proposed one significantly outperforms the best one given in literature for all considered distributions. Specifically, the average percentage improvement of the proposed algorithm over the best existing one is over 90%. A test of hypothesis is conducted to further confirm the results.\",\"PeriodicalId\":42333,\"journal\":{\"name\":\"Journal of Project Management\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Project Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.jpm.2021.9.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Project Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.jpm.2021.9.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
An improved algorithm to minimize the total completion time in a two-machine no-wait flow-shop with uncertain setup times
Since scheduling literature has a wide range of uncertainties, it is crucial to take these into account when solving performance measure problems. Otherwise, the performance may severely be affected in a negative way. In this paper, an algorithm is proposed to minimize the total completion time (TCT) of a two-machine no-wait flowshop with uncertain setup times within lower and upper bounds. The results are compared to the best existing algorithm in scheduling literature: the programming language Python is used to generate random samples with respect to various distributions, and the TCT of the proposed algorithm is compared to that of the best existing one. Results reveal that the proposed one significantly outperforms the best one given in literature for all considered distributions. Specifically, the average percentage improvement of the proposed algorithm over the best existing one is over 90%. A test of hypothesis is conducted to further confirm the results.